「データサイエンスセミナー」 一般社団法人データクレイドル

RStudioデータ分析

森 裕 ー 岡山理科大学 経営学部 経営学科/統計検定 事業委員 <mori@mgt.ous.ac.jp> http://www.mgt.ous.ac.jp/~mori/

2018/12/19

※本セミナーは倉敷市による「高梁川流域インテリジェントICT実装事業2018」の一環として実施します。

今日, ここにいる方々

当該分野のエキスパート

データを利用することに関心があり(高く) ある程度の統計の知識(データ分析の経験)はある

R はトレンドなので(問題解決ツールとして役立つらしいので), 使えるようになりたい

Part1 【入門】 R言語とは RとRStudio(基本操作とデータ処理の初歩) Part2 【実践】 Rによるデータ分析1 (傾向の把握と可視化) Rによるデータ分析2(相関、回帰、予測) Rによるデータ分析3(多変量解析+a)

Part1 【入門】 R言語とは RとRStudio(基本操作とデータ処理の初歩)

Part2 【実践】 Rによるデータ分析1 (傾向の把握と可視化) Rによるデータ分析2 (相関、回帰、予測) Rによるデータ分析3 (多変量解析+a)

▼ 、門】 Rとは RとRStudio(基本操作 | 初歩) [実践] Rによるデータ分析 1 (傾向 | 可視化) 2 (相関 | 回帰 | 予測) 3 (多変量 + a) まとめ

統計解析環境Rの特徴

- 統計解析専用ソフト
- フリーでオープンソース
 - フリー(無償)
 = どこにでもインストールでき、利用しやすい
 = 広く普及・浸透
 - オープンソース
 - =数の論理で信頼性
 - =新しいものや便利なものへの対応が積極的
- どのOSでもOK
 - = Windows, Mac, Linux で動作=OSを気にしない
- 多くの書籍
 - = 「Rを用いたOO」で、すぐに理論理解と分析実施
- 多くの仲間

ENJOY SCIENCE

= 活用のコツや新しい取り組みなどの情報交換

関連URL

RjpWiki

http://www.okadajp.org/RWiki/?RjpWiki The R Project for Statistical Computing https://www.r-project.org/ CRAN

https://cran.r-project.org/ CRAN Japan mirror https://cran.ism.ac.jp/

$\mathbb{E} = \mathbb{R}^{2} \mathbb{R}^{1} \mathbb{R}^{1}$

Rが得意なこと

- 大量データの処理
- データ解析(統計解析)
- グラフ…統計グラフ
- GIS(地理情報処理)
- プログラミング(関数作成)
- シミュレーション
- ルーチンワーク処理
- Rからのドキュメント作成 (HTML/PDF/Word…)

Excelが得意なこと

- 集計(ピポットテーブル)
 - ビジネス文書処理
 - グラフ…棒,折れ線,円などの基本グラフ
 - 関数を使ったデータ変換
 - フィルター
 - データベース関数

Excelはオフィス(ビジネス)ソフト もちろん統計分析はできる ただし、ビジネスを前提 簡単なところでは、散布図でラベル付けができない 多変量解析はできない(それ用のアドインが必要) ところが、ビジネスシーンで本格的に統計が ⇒Excel2016では、統計関係が強化 ex) ヒストグラム、箱ひげ図

Part1 【入門】 R言語とは RとRStudio(基本操作とデータ処理の初歩)

Part2 (実践) Rによるデータ分析1 (傾向の把握と可視化) Rによるデータ分析2 (相関、回帰、予測) Rによるデータ分析3 (多変量解析+a)

https://cran.ism.ac.jp/ などからOSに対応したRをダウンロード ⇒ インストール

計 予測) 3(多変量 + a)	まとめ
------------------	-----

______ 質

R(tCUI 操作 > 要約 (←プロンプトという)入力待ち状態 > 記述 電卓 関連性 予測 1 + 2層別 $(3 * 4) ^ 2$ 分類 見やすくするために, 空白を入れてもよい 比較 変数(オブジェクト) 関数電卓 a < -3 * 4基本統計量 A <- 5 可視化 (グラフ) а 分割表 Α 相関係数 オブジェクト名は a, b, product, A1, Month 12のように、英字で始まる英数字からなる文字列。 回帰分析 sin や sgrt などの予約語, 空白や演算記号は使えない。大文字/小文字は区別。 主成分分析 sales <- c(1,2,3,4,5)idx <- "sales" コレスポンデンス分析 クラスター分析 sales <-1:5idx2 <- c("stock", "sales")</pre> ドキュメント生成 sales2 <- sales</pre> ENJOY SCIENCE 副心理科大学

ボクら、科学の子。

オブジェクトの操作

【入門】 Rとは

V

RとRStudio(基本操作|初歩)

量

まとめ

【実践】Rによるデータ分析1(傾向 | 可視化) 2 (相関 | 回帰 | 予測) RStudio

https://www.rstudio.com/ からダウンロード \Rightarrow インストール

RとRStudio(基本操作 初歩)

RStudioとは

Rのための統合開発環境 直感的なユーザインターフェイス + 強力なコーディングツール

3 (多変量 + a)

まとめ

Rstudioのメリット

- ・直感的なユーザインターフェイス Rの中が見える(感じ)
- ・強力なコーディング
 容易な編集
 入力補助
 関数や代数などの補完が便利
 ・グラフのアウトプットのしやすさ
 - サイズ調整/クリップボード/出力形式png

入門】Rとは

【入門】 Rとは RとRStudio(基本操作|初歩) 🛑 【実践】 Rによるデータ分析1(傾向|可視化) 2 (相関|回帰|予測) 3 (多変量 + a) 🛑 まとめ

4つのパネル(ペイン)

(、門】 Rとは	RとRStudio	(基本操作 初歩)	実践】Rによるテ		化) 2(相関	回帰 予測) 3(多変量 + a)	まとめ	-
				初めて	<i>m</i>	/	マケ			量
_	_						//_) * /		質
•		アイルから	っのテーク	を読み込む。						操作
	da	t <- re	ad.csv("c:/R_work/gi	rade1.csv	r")		い形式のテータノアイルか		
	[T	ools]-[Global	Options…]で作	業ディレク	トリを		し:¥R_WOrk にしっていて担合		記述
	指	定すれば,	パスはイ	要。				に入りている場合		
	da	t <- re	ad.csv("grade1.csv")						
	re	ad.tabl	e でも可	台上。						
	da	t <- re	ad.tabl	e("c:¥R work/	/¥grade1.	csv", header=	=T, sep=	=",")		分類
	引	to head	er:1行	目はラベルか。s	ep:セパレ	/一夕(".")	,1	, ,		
	da	+	01 . 1,	<u></u> # すべてが表示	·される		Options	R version:		
	ha				主ニされる	baad(dat c)	Code	[Default] [64-bit] C:\Program Files\R\R-3.4.1	Change	関数電早
	Ine	au (ual)				neau (uat, 6)	Appearance	Default working directory (when not in a project): C:/R_work Browse		基本統計量
		NO R	eport P	articipation	Written	Practice	Pane Layout	Re-use die sessions for project links Re-to-most recently opened project at startup		可視化 (グラフ)
	1	R001	21	24	27	0	Packages	Rest re previously open source documents at startup Rest re previously open source documents at startup Rest re RData into worksace at startup		分割表
	2	R002	19	20	22	8	📾 R Markdown	Sare workspace to .RData on exit: Ask		相関係数
	3	R003	17	20	14	10	Sweave	Always save history (even when not saving .RData)		回帰分析
	4	R004	17	24	14	8	Spelling	Show .Last.value in environment listing		主成分分析
	5	R005	26	24	26	11	Publishing	Automatically expand tracebacks in error inspector		コレスポンデンス分析
	6	P006	10	21	20	0	Termin 1	Wrap around when navigating to previous/next tab Automatically notify me of updates to RStudio		クラスター分析
	U	1/0/0/0		24	22	о 				ドキュメント生成
EN	IJO	Y SCIEN	CE			221	こ作業ディ	レクトリを指定する		岡山理科大学

.

Ob:

ボクら、科学の子。

OK

Cancel Apply

▶ 平均点の計算

apply(dat[,2:5	5], 2, mean)			
Report	Participation	Written	Practice	
20.171053	22.131579	19.434211	7.513158	

受講した76人の4つの観点の平均点は、レポート点が20.2点、平常点が22.1点、筆記試験が19.4点、実技試験が 7.5点であることがわかる。また、それぞれ満点が30点、30点、30点、10点であるから、得点の取得率が67.3%、 76.2%、64.7%、75.5%となり、筆記試験とレポートが他の2つより悪いことがわかる。

レポート点(datの2列目)と筆記試験得点(datの4列目)の散布図を描く。
 plot(dat[,2],dat[,4])

これより、レポート点と筆記試験得点には、正の相関があること、レポート点も筆記試験も成績が悪いグ ループが存在すること、レポート点は悪かったが、筆記試験をがんばった人が1人いること、逆に、レ ポート点はよかったのに、筆記試験では点が取れなかった人が7人いることなどがわかる。。

クラスター分析 ドキュメント生成

操作

右上がり, 直線傾向

30 Final Test い 20 世 25 4 25 4 25 15 群の存在 10 20 10 15 25

Report

x, *y* それぞれで 平均や度数分布が見える?

Report

入門】 Rとは RとRStudio(基本操作 初歩)

【実践】Rによるデータ分析1 (傾向|可視化) 2 (相関|回帰|予測) 3 (多変量 + a)

量

まとめ

● 図の取り込み

右下のグラフ出力のペインの [Export▼] を クリック。

初めての… ア

Image, PDF, Clipboard が選べる。

右は, Copy to Clipboard...。

表示されたダイヤログボックスで,必要なら, 縮尺を決める。 [Update Preview] ボタンで

画像がリサイズされる。

Clipboardの場合は,形式を選択後, [Copy Plot] で,クリップボードにコピーされる。

練習2

ENJOY SCIENCE

(1) grade1.txt の各観点の標準偏差(sd()を使う)を求めよ。
 (2) grade1 tut の平常点と筆記試験得点の散布図を描け

(2) grade1.txt の平常点と筆記試験得点の散布図を描け。

ドキュメント生成

Part1 【入門】 R言語とは RとRStudio(基本操作とデータ処理の初歩)

Part2 【実践】 Rによるデータ分析1 (傾向の把握と可視化) Rによるデータ分析2 (相関、回帰、予測) Rによるデータ分析3 (多変量解析+a)

RとRStudio (基本操作 | 初歩) (実践) Rによるデータ分析1 (傾向 | 可視化) 2 (相関 | 回帰 | 予測) 3 (多変量 + a) 化真向の把握

顧客データから各支店の様相をつかむ。

データ"customer.csv"の読み込み。
 5つの支店の顧客データ:150顧客 | 6変数(顧客番号,支店名,平均滞在時間,来店回数,性別,購入総額)
 [cst <- read.csv("customer.csv")

中身の確認。

cst

入門】Rとは

または head(cst)

• とりあえず, 要約。

summary(cst)					関数電卓			
No	Branch	Time	Visit	Sex	Purchase	基本統計量			
Min. :110	01 岡山 :30	Min. :-1.00	Min. :1.000	女:72 Min	. :-210	可視化 (グラフ)			
1st Qu.:120	08 岡山南:30	1st Qu.:19.00	1st Qu.:4.000	男: 78 1st	Qu.:1990	分割表			
Median :130	16 玉島 : 30	Median :28.00	Median :5.000	Mec	lian :2790	相関係数			
Mean :130	16 児島 : 30	Mean :27.74	Mean :4.653	Mea	an :2610	回帰分析			
3rd Qu.:140	23 倉敷 : 30	3rd Qu.:35.00	3rd Qu.:6.000	3rd	d Qu.:3340	主成分分析			
Max. :150	30	Max. :60.00	Max. :9.000	Ma	x. :4590	コレスポンデンス分析			
質的変数に対し	ってはカテゴリーと	こその要素数が,量的	り変数に対しては5数	数要約が表示され	れる。	クラスター分析			
(Noは量的変数として認識されている。)									

比較

操作

まとめ

RとRStudio (基本操作 | 初歩) (実践) Rによるデータ分析1 (傾向 | 可視化) 2 (相関 | 回帰 | 予測) 3 (多変量 + a) 化真向の把握

• 性別で購入	金額に違いはあるか?
---------	------------

tapply(cst\$Purchase, cst\$Sex, mean)

女 男

2717.778 2510.513

女性の方が高い。

入門】Rとは

支店別の購入金額は?

tapply(cst\$Purchase, cst\$Branch, mean)

岡山岡山南玉島児島倉敷2643.3332583.3332323.3332690.0002810.000

倉敷支店の成績が一番良く, 玉島支店が一番低い。

● 男女差は支店別に見ても同じか?

tapply(cst\$Purchase, list(cst\$Sex, cst\$Branch), mean)

岡山岡山南玉島児島倉敷女 2740.0002606.6672767.7782828.0952590.0

男 2532.857 2567.778 2132.857 2367.778 3002.5

支店別に見ても女性の購入金額の方が全体に高いことがわかる。でも、倉敷支店は男性の方が高い。

相関係数

回帰分析

主成分分析

操作

要約

まとめ

記述
 関連性
 予測
 層別
 分類
 比較
 関数電卓
 基本統計量
 可視化 (パラフ)
 分割表

タイタニック号の乗船者の様相をつかむ。

データ"titanic.csv"の読み込み。
 2201人 | 4変数(乗船クラス,年齢(大人か小人か),性別,生死)
 [ttn <- read.csv("Titanic.csv")

中身の確認。

head(ttn)

入門】Rとは

• とりあえず, 要約。

<pre>summary(ttn)</pre>					関数電卓
Class	Age	Sex	Survive		基本統計量
1 等船室: 325	子供: 109	女性: 470	死亡: 1490		可視化 (グラフ)
2 等船室: 285	<mark>大人:</mark> 2092	男性: 1731	生存: 711		分割表
3 等船室: 706					相関係数
乗組員 : 885					回帰分析
					主成分分析

コレスポンデンス分析

クラスター分析

ドキュメント生成

まとめ

量

操作

要約

記述

関連性 予測

層別

分類

比較

、入門】 Rとは RとRStudio(基本操作|初歩)

クロフ住計たして

クロス集計をして、生死の原因を抹る。						
						操作
						要約
						記述
1寺桁至 122 203						関連性
2等胎室 167 118						予測
3等船室 528 178			table	e(ttn\$Class, ttn	\$Survive)	層別
乗組員 673 212		1等船室 2	等船室	3等船室	乗組員	
<pre>table(ttn\$Age, ttn\$Survive)</pre>						比較
死亡 生存	死亡 -					2012
子供 52 57						関数電卓
大人 1438 654						基本統計量
table(ttn\$Sex, ttn\$Survive)						可視化 (グラフ)
死亡 牛存	-					分割表
女性 126 344	技					相関係数
男性 1364 367	যা					回帰分析
						主成分分析
モサイクフロット(上記Tableの結果をmosaicplot()の引数に指定す	る。)					コレスポンデンス分析

mosaicplot(table(ttn\$Class, ttn\$Survive))

ドキュメント生成

クラスター分析

まとめ

量

24

RとRStudio(基本操作 | 初歩)

練習3

【入門】 Rとは

		15.11
 (1) 最近,加工品の完成精度が下がっているとの報告があった。 重量にばらつきが出始めているとのこと。 工場では、2つのマシンを昼夜交代制で24時間稼働させている。 240個の製品を抜き取って重さを測った。 	MachineID, Period, Weight A, Day, 99.88 A, Day, 100.09 A, Day, 99.88 A, Day, 100.05	操作 要約 記述 関連性
不良品が出るのは、どこに原因があるか調べよ。		予測
· 但 今 八 / +	: A.Night,99.92	層別
	A,Night,100.24	分類
	A,Night,99.93 A Night 100 18	比較
分布	:	関数電卓
ヒストグラム	: B,Day,99.37	基本統計量
箱ひげ図	B,Day,99.38	可視化 (グラフ)
	B,Day,99.50 B,Day,99.67	分割表
	:	相関係数
	B,Night,98.85	回帰分析
(2) 顧客データで、支店ごとの男女数をクロス表の形で求めよ。	B,Night,99.41	主成分分析
	B,Night,99.21	コレスポンデンス分析
	:	クラスター分析
		ドキュメント生成

量

まとめ

______ 質

描画パラメータの指定

入門】Rとは

- 승 ヒストグラム(加工品データのヒストグラムで) 8 mcn <- read.csv("machine5.csv")</pre> Frequency 2 a <- mcn[mcn\$MachineID=="A",]</pre> 9 b <- mcn[mcn\$MachineID=="B",]</pre> 0 d <- mcn[mcn\$Period=="Day",]</pre> 98.5 99.0 99.5 100.0 100 5 n <- mcn[mcn\$Period=="Night",]</pre> weight hist(a\$Weight, breaks=seg(98.5,100.5,0.1), border="#990000", col="#99343550", main="Histogram", xlab="weight", vlim=c(0,40)) hist(b\$Weight, breaks=seg(98.5,100.5,0.1), border="#999900", col="#edae0050", add=T) hist(d\$Weight, breaks=seg(98.5,100.5,0.1), border="#009900", col="#53995250", main="Histogram",
 - xlab="weight", ylim=c(0,40))

hist(n\$Weight, breaks=seq(98.5,100.5,0.1), border="#000099", col="#5399ff50", add=T)

場合分けをして、AマシンとBマシン、昼と夜のヒストグラムを色を変えて、重ねて描画することができる。

- 散布図でも棒グラフでも指定ができる。
- Latticeパッケージもグラフ/グラフオプションが豊富。

記述
関連性
予測
層別
分類
比較
関数電卓
基本統計量
可視化 (グラフ)
分割表
相関係数
回帰分析

主成分分析

ドキュメント生成

操作

要約

まとめ

RとRStudio(基本操作 | 初歩) 【実践】 Rによるデータ分析1 (傾向 | 可視化) 入門】Rとは 2 (相関) 回帰 予測) 3 (多変量 + a) まとめ 可視化(さまざまなグラフ出力) qqplot2を使ってみよう。

Install Packages

				3#11
	パッケージのインストール。	Install from:	⑦ Configuring Repositories	要約
	library(***)とやってエラーが出たら、そのパッケージを取りにいく	Repository (CRAN, CRANextra	a) 🔻	記述
	[Tools] – [Install Packages]	Packages (separate multiple wi	ith space or comma):	関連性
	で表示されたダイヤログボックスで、パッケージ名を入れる。	Install to Library:	¹	予測
		C:/Users/mori/Documents/R/	/win-library/3.4 [Default]	層別
		✓ Install dependencies		分類
	library(ggplot2)			比較
•	ggplotの振る舞い	1	Install Cancel	関数電卓

ggplot()でキャンバスを準備(ここで座標の各種設定を行う) ggplot2と入れて[Install] +geom_**()関数でグラフ(レイヤー)を重ね描きしていく。 正確には、データを幾何学的オブジェクト(geometric object)に当てはめて可視化する。 主なgeom:

geom_bar()棒グラフgeom_line()折れ線グラフgeom_point()散布図geom_boxplot()箱ひげ図

ggplot2

塌作

基本統計量

可視化 (グラフ)

分割表
 相関係数

回帰分析

主成分分析

コレスポンデンス分析

クラスター分析

ドキュメント生成

データは、Rにデフォルトのあやめ"iris"のデータを使う。
 150個体 | 5変数(がくの長さ,がくの幅,花弁の長さ,花弁の幅,品種)

<u>http://www.ggplot2-exts.org/gallery/</u> にはたくさんのサンプルが

操作

要約

記述

関連性 予測

層別

普通の散布図

ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width))+geom_point()

• 4つの情報を載せた散布図

ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width,colour=Species,size=Petal.Width))+geom_point()

分類 4.5 1 4.5 -比較 関数電卓 4.0 -40-基本統計量 Petal.Width 0.5 可視化 (グラフ) 分割表 3.5 -3.5 -Sepal.Width Sepal.Width 2.0 相関係数 2.5 回帰分析 Species 主成分分析 setosa コレスポンデンス分析 versicolor 2.5 -2.5virginica クラスター分析 ドキュメント生成 2.0 -2.0 -8 Sepal.Length Sepal.Length

Part1 【入門】 R言語とは RとRStudio(基本操作とデータ処理の初歩)

Part2 【実践】 Rによるデータ分析1 (傾向の把握と可視化) Rによるデータ分析2 (相関、回帰、予測) Rによるデータ分析3 (多変量解析+a)

アイスクリームの売れ行き(1人当たりの支出金額)を決める気象要因をつきとめる。

【実践】Rによるデータ分析1(傾向|可視化)

冒

 データ"IceCream.csv"を読み込む。
 (60か月分 | 7変数(年,月,月平均気温(℃),降水量の合計(mm),日照時間(時間),平均風速(m/s), アイスクリーム支出金額(円))

ice <- read.csv("IceCream.csv")</pre>

【入門】 Rとは RとRStudio(基本操作|初歩)(

相関係数を求め、支払金額にきいている気象要因を特定する。

cor(ice)

	Year	Month	Temp	Rain	Sun	Wind	Paid		
Year	1.000000e+00	0.0000000	-1.455626e-17	-0.17961282	0.017356740	-0.10339936	0.028964334		関数電卓
Month	0.000000e+00	1.00000000	3.735475e-01	0.07073238	-0.109945984	-0.38729098	0.222026682		基本統計量
Temp	-1.455626e-17	0.37354753	1.000000e+00	0.29671643	-0.144678778	-0.37269477	0.905154304		可視化 (グラフ)
Rain	-1.796128e-01	0.07073238	2.967164e-01	1.00000000	-0.474815962	0.24365482	0.102697373		分割表
Sun	1.735674e-02	-0.10994598	-1.446788e-01	-0.47481596	1.000000000	0.09581258	-0.002532996		
Wind	-1.033994e-01	-0.38729098	-3.726948e-01	0.24365482	0.095812580	1.00000000	-0.306280170		相関係数
Paid	2.896433e-02	0.22202668	9.051543e-01	0.10269737	-0.002532996	-0.30628017	1.000000000		回帰分析
(予想	想通り)月平均	気温との相	関が一番高い。	•					主成分分析
									コレスポンデンス分析
この際、散布図行列も描いておく。									
									L

pairs(ice)

ドキュメント生成

______ 質

操作

2 (相関 | 回帰 | 予測) 3 (多変量 + a) - まとめ

【入門】 Rとは RとRStudio(基本操作|初歩)

● 「アイスクリームの支出金額」を y, 「月平均基本」を x として, 回帰分析を行う。

lm.ice <- lm(Paid~Temp, data=ice)</pre> summary(lm.ice) Residuals: Min 10 Median 30 Max -243.384 -107.689 2.523 121.180 309.985 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 20.332 43.116 0.472 0.639 37.900 2.337 16.217 <2e-16 *** Temp Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1 Residual standard error: 143.2 on 58 degrees of freedom Multiple R-squared: 0.8193, Adjusted R-squared: 0.8162 F-statistic: 263 on 1 and 58 DF, p-value: < 2.2e-16

これより,回帰式は, y = 20.332 + 37.900x となる。

量質

操作

要約

記述

関連性

予測

層別 分類

比較

関数電卓

基本統計量 可視化 (グラフ)

> 分割表 相関係数

回帰分析

主成分分析

ドキュメント生成

入門】 Rとは RとRStudio(基本操作 | 初歩)

● この回帰直線を表す。(月による違いがありそうなので, Monthでラベルをつけておく。)

まとめ

質

【入門】 Rとは RとRStudio(基本操作 | 初歩) 【実践】Rによるデータ分析1 (傾向 | 可視化) 2 (相関 | 回帰 | 予測) 3 (多変量 + a) 🛑 まとめ

練習4

新しい店舗を建てたい。			诵行人数	駅からの時間	引店舗面積	駐重台数	従業員数	品数	売上高	۱Ļ	
最も高い売り上げが期待できる店舗が		branch	numpass	minutes	area	parkcar	numwork	kinds	sales		要約
最初の候補となる。	1	三条	716	16	44	16	7	125	78		記述
そのために, 既存のチェーン店15店舗	2	京都南	2018	30	25	8	3	132	34		
の売上高と6つの調査観点に関する	3	長岡京	1880	3	68	18	10	110	145		予測
データ "store.csv" を用いて.	4	生駒	1416	20	30	10	5	70	51		
3つの候補の売り上げを予測し	5	高槻	904	10	67	27	10	82	98		
	6	枚方	1250	2	66	10	10	82	115	ļĻ	
	7	池田	1039	15	52	15	7	82	75		比較
	8	東大阪	2394	1	113	50	20	125	258		
重回唱分析	9	堺	711	12	30	12	7	102	70		
	10	八尾	738	10	39	10	7	70	65	ļĻ	
回帰式	11	和歌山	1322	11	60	23	4	72	82		可視化 (グラフ)
予測	12	宝塚	813	12	34	10	3	97	32		分割表
	13	西宮	1733	3	96	40	10	145	190		 相関係数
	14	西神	1569	5	55	28	10	92	168		回帰分析
	15	加古川	1770	6	80	32	8	80	195		
		支店名	通行人	駅からの時間	間 店舗面積	漬 駐車台数	従業員数	品数		ļĻ	王成分分析
		候補1	1956		3	88 43	2 10	120		ļĹ	コレスポンデンス分析
		候補2	1300		12	90 4:	5 10	100			クラスター分析
		候補3	1423		8	42 30	5 10	90		$^{\prime}$ $^{\prime}$	ドキュメント生成

岡山理科大学 ALC: NOT DESCRIPTION

量 質

+= //-

入門】 Rとは RとRStudio(基本操作 | 初歩)

【実践】Rによるデータ分析1 (傾向 | 可視化) 2 (相関 | 回帰 | 予測) 3 (多変量 + a) 🛑 まとめ

回帰と予測

量

練習 5

Part1 【入門】 R言語とは RとRStudio(基本操作とデータ処理の初歩)

Part2 【実践】 Rによるデータ分析1 (傾向の把握と可視化) Rによるデータ分析2 (相関、回帰、予測) Rによるデータ分析3 (多変量解析+a)

【入門】 Rとは RとRStudio(基本操作 初歩)	【実践】Rによるデータ分析1 (傾向 可視化) 2 (相関 回帰 予測)	— 3 (多変量 + a) 🛑 まとめ

主成分分析

都道府県別アルコール類の年間消費量をもとに,種類に関する都道府県の特徴を明らかにする。

	データ"	sake.csv"	を読み込む。					
	47都道府	県 6変数(者	『 道府県, 清酒,	焼酎, ビール,	果実酒,ウイ	スキー)		
	都道府県	紀(第1変	数)を行の名前	前にしておく	0			
	sak <-	read.csv	("sake.csv'	', row.nam	es="Pref")			
•	主成分分	分析を行う。	酒類によって量	量が大きく違	うので,標準	化して実行する	3.	
	pca.sa	k<-prcomp	(sak, scale	e=T)				
	pca.sa	k						
	Standar	d deviatior	ns (1,, p=	=5):				
	[1] 2.1	348134 0.53	393196 0.3121	L795 0.19783	397 0.122920	7		
	Rotatio	on (n x k) =	= (5 x 5):					
		PC1	PC2	PC3	PC4	PC5		
	Sake	-0.4440460	-0.48996881	0.4096785	0.6197155	0.10425933		
	Shochu	-0.4154208	0.83227891	0.3414540	0.1271593	0.04446461		
	Bear	-0.4575347	-0.23743062	0.2528134	-0.7412063	0.34783235		
	Wine	-0.4530736	0.05039986	-0.7873631	0.1721826	0.37761969		

Whisky -0.4643652 -0.09126303 -0.1780939 -0.1440474 -0.85062854

ENJOY SCIENCE

ボクら、科学の子。

質
操作
記述
関連性
予測
層別
分類
比較
関数電卓
基本統計量
可視化 (グラフ)
分割表
相関係数
回帰分析
主成分分析
コレスポンデンス分析
クラスター分析
レナコントレケボ

31

ボクら、科学の子。

~____

【入門】 Rとは RとRStudio(基本操作 | 初歩) ●【実践】Rによるデータ分析1 (傾向 | 可視化) 2 (相関 | 回帰 | 予測) 3 (多変量 + α) ● まとめ

ンテン人ケ

量 ______ 質

操作

要約

記述

関連性

予測

麺つゆ各銘柄の特徴をポジショニングし、販売戦略に活かす。

 データ"ndsoup.csv"を読み込む。
 8銘柄 | 12変数(商品名,商品の味,テレビCM,ブランドカ,商品の素材・製法,商品の容量,テレビCM以外の広告, 増量品などキャンペーン品,希望小売価格,消費者キャンペーン・イベント,POP等店頭即売物,おまけ・レシピ等)
 商品名(第1変数)を行の名前にしておく。

nds <- read.csv("ndsoup.csv", row.names="Brand")</pre>

コレスポンデンス分析(対応分析)を行う。
 コレスポンデンス分析は、"MASS"ライブラリーに入っている。
 何次元までとるかは、nf=で指定する。

library(MASS)

ca.nds <- corresp(nds, nf=2)</pre>

biplot(ca.nds, col=c(3, 4))

⇒商品の群,調査項目の群,両方の位置関係から, 個体のポジションの読み取りを行う。

ドキュメント生成

【入門】 Rとは RとRStudio(基本操作 | 初歩) 🛑 【実践】 Rによるデータ分析 1 (傾向 | 可視化) 2 (相関 | 回帰 | 予測) 3 (多変量 + a) 🛑 まとめ

世界各国の経済指標から,よく似た国どおしをグルーピングする。

データ"cityecon2.csv"を読み込む。
 46都市 | 4変数(都市名,平均労働時間,物価の指標(Zurichを100として),時給の指標(Zurichを100として))
 都市名(第1変数)を行の名前にしておく。

cty <- read.csv("cityecon2.csv", row.names="City")</pre>

階層的クラスター分析を行う。
 データは標準化し、非類似度の計算方法とクラスター間の距離の求め方を指定し、デンドログラムを描く。
 x=scale(cty)
 hc <- hclust(dist(x, method = "euclidean"), "complete")
 plot(hc, hang = -1)

経済指標の似た任意の数のグループに分けられる。 たとえば,7グループに分けたい場合, 右図のように赤線のところで切ればよい。

操作

要約

記述

関連性 予測

層別

分類

比較

関数電卓

基本統計量

RとRStudio(基本操作)初歩) 【実践】Rによるデータ分析1 (傾向 | 可視化 まとめ

뒅

- Rstudioから
 - ・HTML(Webページ)

入門】Rとは

- ・PDF, Wordなどの文書
- ・Beamerなどのプレゼンスライド などのドキュメントが生成できる。
- メリット
 - ・R上で分析からレポート生成まで
 - Office / 画像処理ソフトが不要
 - ・内容そのままの再現, 配布が簡単 など
- パッケージ"rmarkdown"をインストールする。
- 説明は

https://rmarkdown.rstudio.com/ https://kazutan.github.io/kazutanR/Rmd intro.html などで。

ドキュメント生成

ンス分析

スター分析

RとRStudio(基本操作 | 初歩) [実践] Rによるデータ分析1(傾向 | 可視化) 2(相関 | 回帰 | 予測) 3(多変量 + a) = まとめ

関数の作成

量	
質	

_		
	自分で関数を定義することかできる。	·昂/左
	関数名 <- function (引数1, ・・・, 引数n) {	」 1栄17F
		要約
		記述
	}	関連性
•	例	予測
	たとえば,縦の長さと横の長さを入れて,長方形の面積を求める関数は,	層別
	rec <- function(x, v){	分類
	× * 17	比較
	x y	即物毒素
	}	
	とする。	基本統計量
	(コンソール上では,関数の定義が続いている間は,+ で行がつながっていることが示される。)	可視化 (グラフ)
	縦(x)=3, 横(y)=4の長方形の面積は,	分割表
	rec(3, 4)	相関係数
		回帰分析
		主成分分析
	[1] 12	コレスポンデンス分析
	となる。	クラスター分析
		トキュメント生成

【入門】 Rとは

Part1 【入門】 R言語とは RとRStudio(基本操作とデータ処理の初歩)

Part2 【実践】 Rによるデータ分析1 (傾向の把握と可視化) Rによるデータ分析2 (相関、回帰、予測) Rによるデータ分析3 (多変量解析+a)

入門】 Rとは RとRStudio(基本操作|初歩) 🛑 【実践】 Rによるデータ分析1(傾向|可視化) 2 (相関|回帰|予測) 3 (多変量 + a) 🛑 まとめ

Rは統計分析に向いている統計解析環境

Excelではできない**OO分析**などは,絶対 R。 データへのアクセス(あれこれ触る)には断然 R。 何千ものパッケージが分析を助けてくれる。 (四則計算や簡単なグラフ作成,扱うデータ量が小さい場合は, Excelが優位な場合も)

• RとRStudio

RStudioは統合環境

オリジナルRの使いにくさを解消

Rの**中身**が見える感じ

入力**補助・補完/グラフ出力**などは大変便利

⇒単純なRの操作だけでも,オリジナルのRは使う必要なない。

外との連携が強化(R MarkdownやShinyなど。こういった特徴の利用へ挑戦!)

- たくさんの参考URLや文献があり、そして仲間がいる!
- ただし, **手法の理解**は必要・・・ですね。

• R

RjpWiki <u>http://www.okadajp.org/RWiki/?RjpWiki</u> The R Project for Statistical Computing <u>https://www.r-project.org/</u> CRAN <u>https://cran.r-project.org/</u> (CRAN Japan mirror <u>https://cran.ism.ac.jp/</u>)

Rの使い方

http://cse.naro.affrc.go.jp/takezawa/r-tips/r.html https://stats.biopapyrus.jp/r/#std

- RStudio <u>https://www.rstudio.com/</u>
- RStudioの使い方

https://kazutan.github.io/JSSP2018 spring/intro rstudio.html

● 森の教科書

<u>http://mo161.soci.ous.ac.jp/R/DA_R/</u> Rの基本的な使い方 <u>http://mo161.soci.ous.ac.jp/@d/indexj.html</u> 解析ストーリーに基づくデータ分析の学習 (Rのコードがある \Rightarrow <u>http://mo161.soci.ous.ac.jp/@d/DoLStat/indexj.html</u>)

● Rの書籍…たくさん!! ビジネス分野のものも多い。対象に直結するものが入りやすいと思います。

ご清聴ありがとうございました。 RStudioでのデータ分析,お疲れさまでした。

