# -- K1 ----------------------------- (3^2-5)/4 a <- 2 b <- 3 c <- 1 (-b+(b^2-4*a*c)^(-2))/(2*a) d <- c(4, 9, 25, 36) sqrt(d) # -- K2 ----------------------------- dat <- read.csv("grade1.csv") apply(dat[,2:5], 2, sd) plot(dat[,3], dat[,4]) plot(dat$Participation, dat$Written) # -- K3 ----------------------------- mcn <- read.csv("machine5.csv") tapply(mcn$Weight, list(mcn$MachineID, mcn$Period), mean) tapply(mcn$Weight, list(mcn$MachineID, mcn$Period), var) tapply(mcn$Weight, list(mcn$MachineID, mcn$Period), sd) boxplot(mcn$Weight~mcn$MachineID) stripchart(mcn$Weight~mcn$MachineID, vertical = TRUE, pch = 21, col = "maroon", bg ="orange",method = "jitter", add = TRUE) boxplot(mcn$Weight~mcn$Period) stripchart(mcn$Weight~mcn$Period, vertical = TRUE, pch = 21, col = "maroon", bg ="orange",method = "jitter", add = TRUE) case <- paste(mcn$MachineID, mcn$Period) boxplot(mcn$Weight~case) stripchart(mcn$Weight~case, vertical = TRUE, pch = 21, col = "maroon", bg ="orange",method = "jitter", add = TRUE) # -- K4 ----------------------------- cst <- read.csv("customer.csv") table(cst$Branch, cst$Sex) str <- read.csv("store.csv", row.names="branch") lm.str <- lm(sales~., data=str) summary(lm.str) x1 <- c(1, 1956, 3, 88, 42, 10, 120) x2 <- c(1, 1300, 12, 90, 45, 10, 100) x3 <- c(1, 1423, 8, 42, 36, 10, 90) t(lm.str$coef) %*% x1 t(lm.str$coef) %*% x2 t(lm.str$coef) %*% x3 # -- K5 ----------------------------- epw <- read.csv("EPower1.csv") cor(epw$Temp, epw$Power.Max) lm.epw <- lm(epw$Power.Max~epw$Temp) summary(lm.epw) epw[45:47,3] <- epw[1,3] ep.n <- epw[epw$Day==" N",] ep.h <- epw[epw$Day==" H",] lm.ep.n <- lm(ep.n$Power.Max~ep.n$Temp) summary(lm.ep.n) lm.ep.h <- lm(ep.h$Power.Max~ep.h$Temp) summary(lm.ep.h)