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Abstract The expectation–maximization (EM) algorithm is a popular algorithm for
finding maximum likelihood estimates from incomplete data. However, the EM algo-
rithm converges slowly when the proportion of missing data is large. Although
many acceleration algorithms have been proposed, they require complex calculations.
Kuroda and Sakakihara (Comput Stat Data Anal 51:1549–1561, 2006) developed the
ε-accelerated EM algorithm which only uses the sequence of estimates obtained by the
EM algorithm to get an accelerated sequence for the EM sequence but does not change
the original EM sequence. We find that the accelerated sequence often has larger val-
ues of the likelihood than the current estimate obtained by the EM algorithm. Thus, in
this paper, we try to re-start the EM iterations using the accelerated sequence and then
generate a new EM sequence that increases its speed of convergence. This algorithm
has another advantage of simple implementation since it only uses the EM iterations
and re-starts the iterations by an estimate with a larger likelihood. The re-starting algo-
rithm called the εR-accelerated EM algorithm can further improve the EM algorithm
and the ε-accelerated EM algorithm in the sense of that it can reduces the number of
iterations and computation time.
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1 Introduction

The expectation–maximization (EM) algorithm formulated by Dempster et al. (1977)
is a general and popular algorithm for finding maximum likelihood estimates (MLEs)
from incomplete data due to stability in convergence, simplicity in implementation
and applicability in practice. However, the drawback of the EM algorithm is that its
convergence is linear and very slow when the proportion of missing data is high.

In order to circumvent the problem of slow convergence of the EM algorithm,
various acceleration algorithms incorporating optimization methods with faster con-
vergence rate have been proposed. The optimization methods include the multivariate
Aitken method of Louis (1982) and Laird et al. (1987), the conjugate gradient method
of Jamshidian and Jennrich (1993) and the quasi-Newton method of Lange (1995) and
Jamshidian and Jennrich (1997). However, they require the matrix computation such
as matrix inversion or evaluation of Hessian and Jacobian matrices and a line search
for step length optimization. Therefore their acceleration algorithms tend to lack one
or more of the nice properties of the EM algorithm, although they converge faster than
the EM algorithm.

Kuroda and Sakakihara (2006) developed the ε-accelerated EM algorithm for accel-
erating the convergence of the sequence of EM iterations using the vector ε algorithm
of Wynn (1962). The algorithm consists two steps: The first step is the expectation
and maximization steps (the EM step) of the EM algorithm and the second step is
the acceleration step using the vector ε algorithm. The vector ε algorithm is a fairly
simple computational procedure and its implementation is very easy. Moreover, its
computational cost is much less than that of any optimization method. The merit of
the ε-accelerated EM algorithm is that it requires only the sequence of EM iterations
for acceleration and maintains the nice properties of the EM algorithm. In the numer-
ical experiments, Kuroda and Sakakihara (2006) demonstrated that the ε-accelerated
EM algorithm significantly accelerates the convergence of the sequence of EM itera-
tions. Wang et al. (2008) provided theorems concerning convergence and acceleration
of the ε-accelerated EM algorithm.

In order to further reduce the number of iterations and computation time, we improve
the ε-accelerated EM algorithm using a re-starting procedure. The re-starting proce-
dure embedding in the acceleration step finds an initial value for re-starting the EM step
such that a newly generated sequence of EM iterations from the value moves quickly
into a neighborhood of a stationary point. When applying the ε-accelerated EM algo-
rithm to the newly generated sequence, its speed of convergence can be increased.
Therefore the use of the re-starting procedure makes the ε-accelerated EM algorithm
converge faster. We refer the ε-accelerated EM algorithm with a re-starting procedure
to the εR-accelerated EM algorithm.

The paper is organized as follows. Section 2 describes the ε-accelerated EM algo-
rithm. In Sect. 3, we provide the εR-accelerated EM algorithm and show some theo-
retical results concerning its acceleration. Section 4 presents numerical experiments to
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illustrate the behavior of convergence of the εR-accelerated EM algorithm. In Sect. 5,
we present our concluding remarks.

2 The ε-accelerated EM algorithm

Let y be the incompletely observed data in a sample space Ωy and x be the complete
data augmented from y in a sample space Ωx. Assume that there exists some function
h(x) = y relating x to y. Let f (·|θ) denote a density function with an unknown
d-dimensional parameter vector θ = (θ1, . . . , θd)� in a parameter spaceΘ and L(θ) =
log f (·|θ)be the log-likelihood function of θ . We denote the log-likelihood function for
observed data y by Lo(θ) = log f (y|θ), and the log-likelihood function for complete
data x by Lc(θ) = log f (x|θ). Denote the conditional expectation of Lc(θ) given y
and θ ′ by

Q(θ |θ ′) = E[Lc(θ)|y, θ ′].

The EM algorithm iteratively finds the sequence of EM estimates by

θ(t+1) = arg max
θ∈Θ Q(θ |θ(t))

at the t th iteration for t = 0, 1, . . ..
First we describe the EM algorithm for an initial value θ(0) ∈ Θ as follows:

– E-step: Calculate the expectation

Q(θ |θ(t)) = E[Lc(θ)|y, θ(t)].

– M-step: Find

θ(t+1) = arg max
θ∈Θ Q(θ |θ(t)).

The E- and M-steps are repeated to produce the sequence of estimates {θ(t)}t≥0. We
define a mapping θ �→ M(θ) from Θ to Θ such that each iteration θ(t) → θ(t+1) is
denoted by

θ(t+1) = M(θ(t)). (1)

The EM algorithm has the property

Lo(θ
(t+1)) ≥ Lo(θ

(t)), (2)

and {θ(t)}t≥0 converges to a stationary point θ∗.
Next we briefly introduce the vector ε algorithm presented by Wynn (1962) to

accelerate the convergence of a slowly convergent vector sequence. The algorithm is
very effective for linearly convergent sequences. Let {θ(t)}t≥0 be a linearly convergent
vector sequence generated by an iterative computational procedure and converge to a
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stationary point θ∗ as t →∞. Then the vector ε algorithm generates the accelerated
sequence {θ̇ (t)}t≥0 for {θ(t)}t≥0 by

θ̇ (t−1) = θ(t) +
[[

θ(t−1) − θ(t)
]−1 +

[
θ(t+1) − θ(t)

]−1
]−1

, (3)

where [θ ]−1 = θ/‖θ‖2 and ‖θ‖ is the Euclidean norm of θ , see “Appendix 1” for
details.

Below we describe the ε-accelerated EM algorithm proposed by Kuroda and Sakak-
ihara (2006). Given an initial value θ(0) ∈ Θ , the ε-accelerated EM algorithm repeats
the following steps:

– EM step: Find

θ(t+1) = M(θ(t)).

– ε-acceleration: Use the EM sequence (θ(t+1), θ (t), θ (t−1)) to generate the accel-
erated sequence from

θ̇ (t−1) = θ(t) +
[[

θ(t−1) − θ(t)
]−1 +

[
θ(t+1) − θ(t)

]−1
]−1

,

until

||θ̇ (t−1) − θ̇ (t−2)||2 ≤ δ,

where δ is a desired accuracy.

The ε-accelerated EM algorithm generates two sequences: One is the EM sequence
{θ(t)}t≥0 at the EM step, and the other is the accelerated sequence {θ̇ (t)}t≥0 at the
ε-acceleration step. The accelerated sequence does not make any effect on the EM
sequence. Wang et al. (2008) showed that {θ̇ (t)}t≥0 converges to the same stationary
point of {θ(t)}t≥0 and it converges faster than {θ(t)}t≥0. The ε-accelerated EM algo-
rithm only uses the EM sequence, and thus it maintains the stability and simplicity of
the EM algorithm.

3 Improvement of the ε-accelerated EM algorithm by using a re-starting
procedure: the εR-accelerated EM algorithm

The ε-accelerated EM algorithm generates two parallel sequences, the accelerated
sequence {θ̇ (t)}t≥0 and the EM sequence {θ(t)}t≥0. But at the ε-acceleration step,
θ̇ (t−1) may make the next EM estimate M(θ̇ (t−1)) have a larger likelihood value than
the current EM estimate θ(t+1), that is, Lo(M(θ̇ (t−1))) > Lo(θ

(t+1)). Thus, when this
occurs, we re-start the EM iterations with the initial value θ̇ (t−1), stop the original
EM sequence, and get θ̇ (t) from (θ̇ (t−1), M(θ̇ (t−1)), M(M(θ̇ (t−1)))). Notice that at
the re-starting point, we still generate the EM sequence using three estimates obtained
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from the same initial value θ̇ (t−1). That is, we keep to always apply the ε-acceleration
to a sequence obtained by the EM mapping M() from the same initial value. This
re-starting algorithm proposed here is called the εR-accelerated EM algorithm.

By our experiments, the re-starting procedure is performed almost every time only
by the re-starting condition Lo(M(θ̇ (t−1))) > Lo(θ

(t+1)), and it inefficiently takes
much computation time. Thus we add one more condition for re-starting ‖θ̇ (t−1) −
θ̇ (t−2)‖2 ≤ δRe( > δ), and we reset δRe = δRe/10k at each re-starting, where k is an
integer, such as 1. By this condition, we control the re-starting frequency. For example,
let δ = 10−12 for stopping condition, and initialize δRe = 1 and k = 1. Then the re-
starting procedure is performed at most 12 times. The conditions for re-starting are
summarized as follows:

(i) Lo(M(θ̇ (t−1))) > Lo(θ
(t+1)), and

(ii) ‖θ̇ (t−1) − θ̇ (t−2)‖2 < δRe.

Condition (i) means that the likelihood can be increased by the re-starting. Condition
(ii) is used to reduce the frequency of re-starting. This is the key idea of the re-starting
procedure.

The εR-accelerated EM algorithm repeats the following steps:

– EM step: Find

θ(t+1) = M(θ(t)).

– ε-acceleration step: Use (θ(t+1), θ (t), θ (t−1)) to generate the accelerated sequence
from

θ̇ (t−1) = θ(t) +
[[

θ(t−1) − θ(t)
]−1 +

[
θ(t+1) − θ(t)

]−1
]−1

.

– re-starting step: If Lo(M(θ̇ (t−1))) > Lo(θ
(t+1)) and ‖θ̇ (t−1) − θ̇ (t−2)‖2 < δRe,

then set

θ(t) = θ̇ (t−1),

update

θ(t+1) = M(θ̇ (t−1)),

and reset δRe = δRe/10k .

Set t = t + 1. Repeat the above steps until

||θ̇ (t−1) − θ̇ (t−2)|| ≤ δ.

The initial value δRe and the size of decrement 10−k are related to the improvement
of the computational efficiency of the ε-accelerated EM algorithm. When setting δRe =
1 and the decrement of 100, the algorithm may re-start in every iteration after several
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iterations. Then the computation time for obtaining the re-starting EM sequence is
twice that for doing {θ(t)}t≥0 in each iteration. In the case of setting the larger size of
decrement such as 10−8 or 10−10 for δ = 10−12, the re-starting is performed a few
times. In both cases, the computation time of the εR-accelerated EM algorithm may
take longer than or the same as that of the ε-accelerated EM algorithm. Thus when
the re-starting step effectively finds initial values, the εR-accelerated EM algorithm
greatly reduces the number of iterations and computation time for convergence.

The advantage of the εR-accelerated EM algorithm over the ε-accelerated EM
algorithm is that it re-starts the iterations of the EM algorithm at a better current
estimate and also keeps that the likelihood increases in the iterations. We give the
pseudo-code of the εR-accelerated EM algorithm in “Appendix 2”.

We describe the sequences obtained by two algorithms at iterations:
The sequences of the ε-accelerated EM algorithm
−EM

{θ(t)}t≥0 : θ(0) θ (1) θ (2) . . . θ (t−1) θ (t) θ (t+1) θ (t+2) θ (t+3) . . .

−ε-acceleration

{θ̇ (t)}t≥0 : θ̇ (0) . . . θ̇ (t−3) θ̇ (t−2) θ̇ (t−1) θ̇ (t) θ̇ (t+1) . . .

The sequences of the εR-accelerated EM algorithm

−re-started EM Re-start at the (t + 1)th iteration

{θ̃ (t)}t≥0 : θ(0) θ (1) θ (2) . . . θ (t−1) θ (t) θ̃ (t+1) θ̃ (t+2) θ̃ (t+3) . . .

= θ̇ (t−1) = M(θ̇ (t−1))

−re-started ε-acceleration

{ ˙̃θ(t)}t≥0 : θ̇ (0) . . . θ̇ (t−3) θ̇ (t−2) θ̇ (t−1) ˙̃θ(t) ˙̃
θ(t+1) . . .

When the re-starting procedure is performed at the (t + 1)th iteration, we obtain
a new EM sequence {θ̃ (s)}s≥t+1 starting from θ̃ (t+1) = M(θ̇ (t−1)), and then the

εR-accelerated EM algorithm generates { ˙̃θ(s)}s≥t+1 from the re-started EM sequence

{θ̃ (s), θ̃ (s+1), θ̃ (s+2)}. Note that ˙̃θ(t) is calculated using {θ(t), θ̃ (t+1), θ̃ (t+2)}.
Now we discuss and compare the convergence of these sequences. We have from

Meng and Rubin (1994)

θ(t+1) − θ∗ = DM(θ∗)(θ(t) − θ∗)+ O(||θ(t) − θ∗||2),

where

DM(θ) =
(

∂ M j (θ)

∂θi

)

is the d × d Jacobian matrix for the mapping M(θ) = (M1(θ), . . . , Md(θ))�. We
assume that t is sufficiently large and θ(t) is in a neighborhood of θ∗. Then the EM
algorithm is essentially a linear iteration
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θ(t+1) − θ∗ = DM(θ∗)(θ(t) − θ∗) (4)

with iteration matrix DM(θ∗). The largest eigenvalue of DM(θ∗) governs the rate
of convergence of the EM algorithm and the linear iteration (4) has the same rate of
convergence as the EM algorithm. Schafer (1997, p. 59) provides the approximation

θ(t+1) − θ∗ = λ(θ(t) − θ∗), (5)

where λ is the largest eigenvalue of DM(θ∗). By Eq. (5), we have

‖θ(t+2) − θ∗‖ = λ‖θ(t+1) − θ∗‖ = λ2‖θ(t) − θ∗‖

and therefore obtain

‖θ(t+L) − θ∗‖ = λL‖θ(t) − θ∗‖. (6)

Under some conditions (Little and Rubin 1987), the estimate of θ has asymptotically
the normal distribution with mean θ∗. Then the closer to θ∗ the estimate is, the larger
the density is. By Lo(M(θ̇ (t−1))) > Lo(θ

(t+1)), we have

‖θ̃ (t+1) − θ∗‖ = ‖M(θ̇ (t−1))− θ∗‖ < ‖θ(t+1) − θ∗‖.

The mapping of θ̃ (t) is the same as the mapping of θ(t), and they are different only by
the parameter values. Thus we have

θ̃ (t+1) − θ∗ = λ(θ̃ (t) − θ∗).

Similar to Eq. (6), we obtain

‖θ̃ (t+L) − θ∗‖ = λL‖θ̃ (t) − θ∗‖. (7)

Thus we have from Eqs. (6) and (7)

‖θ̃ (t+L) − θ∗‖ < ‖θ(t+L) − θ∗‖. (8)

When inequality (8) holds, we obtain the following result of the speed of convergence

of {θ̇ (t)}t≥0 and { ˙̃θ(t)}t≥0.

Theorem 1 Let { ˙̃θ(t)}t≥0 be the sequence generated by the εR-accelerated EM algo-

rithm and {θ̇ (t)}t≥0 be the sequence by the ε-accelerated EM algorithm. Then { ˙̃θ(t)}t≥0
converges to θ∗ more quickly than {θ̇ (t)}t>0.

Proof First we provide the result that {θ̇ (t)}t≥0 and { ˙̃θ(t)}t≥0 converge to θ∗ faster than
{θ(t)}t≥0 and {θ̃ (t)}, respectively. Wang et al. (2008) showed the following lemma.
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Lemma 1

lim
t→∞
||θ̇ (t−1) − θ∗||
||θ(t+1) − θ∗|| = 0.

By Lemma 1, we have ||θ̇ (t−1) − θ∗|| = o(||θ(t+1) − θ∗||). Similarly applying the

ε-acceleration to the re-starting sequence {θ̃ (t)}t≥0, we also have || ˙̃θ(t−1) − θ∗|| =
o(||θ̃ (t+1) − θ∗||). That is, the ε-acceleration can speed up the convergence of the
sequence {θ̃ (t)}t≥0.

Next we show that the speed of convergence of { ˙̃θ(t)}t≥0 is faster than that of
{θ̇ (t)}t≥0. We set �θ(t−1) = θ(t) − θ(t−1) and η(t) = [[�θ(t)]−1 − [�θ(t−1)]−1]−1.
Then we have from Eq. (3)

‖θ̇ (t) − θ∗‖2 = ‖θ(t) − θ∗ + η(t)‖2
= ‖θ(t) − θ∗‖2 + 2〈θ(t) − θ∗, η(t)〉 + ‖η(t)‖2. (9)

Since

�θ(t) = θ(t+1) − θ(t) = (θ(t+1) − θ∗)− (θ(t) − θ∗) = (λ− 1)(θ(t) − θ∗)

for sufficiently large t and θ(t) in a neighborhood of θ∗, we have

‖�θ(t)‖2 = (λ− 1)2‖θ(t) − θ∗‖2

and

‖�θ(t) −�θ(t−1)‖2 = (λ− 1)4‖θ(t−1) − θ∗‖2.

We obtain from Wang et al. (2008) and the above equations

η(t) =
[
�θ(t)

‖�θ(t)‖2 −
�θ(t−1)

‖�θ(t−1)‖2
]−1

= ‖�θ(t)‖2‖�θ(t−1)‖2
‖�θ(t) −�θ(t−1)‖2

[
�θ(t)

‖�θ(t)‖2 −
�θ(t−1)

‖�θ(t−1)‖2
]

= −λ(θ(t−1) − θ∗).

Then we have

‖η(t)‖2 = λ2‖θ(t−1) − θ∗‖2

and

〈θ(t) − θ∗, η(t)〉 = −λ2‖θ(t−1) − θ∗‖2.
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Equation (9) becomes

‖θ̇ (t) − θ∗‖2 = ‖θ(t) − θ∗‖2 − λ2‖θ(t−1) − θ∗‖2.

In a similar way, we obtain

‖ ˙̃θ(t) − θ∗‖2 = ‖θ̃ (t) − θ∗‖2 − λ2‖θ̃ (t−1) − θ∗‖2.

We have from Eqs. (6) and (7) and inequality (8)

‖θ̃ (t+L) − θ∗‖
‖θ(t+L) − θ∗‖ =

‖θ̃ (t+L−1) − θ∗‖
‖θ(t+L−1) − θ∗‖ = · · · =

‖θ̃ (t+1) − θ∗‖
‖θ(t+1) − θ∗‖ = γ < 1.

By the above two equations, we get

‖ ˙̃θ(t+L) − θ∗‖2 = ‖θ̃ (t+L) − θ∗‖2 − λ2‖θ̃ (t+L−1) − θ∗‖2
= γ 2(‖θ(t+L) − θ∗‖2 − λ2‖θ(t+L−1) − θ∗‖2),

and thus obtain

‖ ˙̃θ(t+L) − θ∗‖2
‖θ̇ (t+L) − θ∗‖2 =

‖θ̃ (t+L) − θ∗‖2 − λ2‖θ̃ (t+L−1) − θ∗‖2
‖θ(t+L) − θ∗‖2 − λ2‖θ(t+L−1) − θ∗‖2 = γ 2 < 1,

which completes the proof of the theorem. ��

4 Numerical experiments

In this section, we provide numerical experiments using linear models and Poisson and
normal mixture models. Then we investigate how much faster the εR-accelerated EM
algorithm converges than the EM and ε-accelerated EM algorithms and compare the
performance of the εR-accelerated EM algorithm with that of the AEM algorithm pro-
posed by Jamshidian and Jennrich (1993). The AEM algorithm is a conjugate gradient
acceleration of the EM algorithm and is described in “Appendix 3”. As the line search
algorithm in the AEM algorithm, we use the gold-section method (R code is given
in Jones et al. (2009)). All computations are performed with the statistical package R
(R Development Core Team 2013) executing on Intel Core 2 Duo 2.4 GHz with 4 GB
of memory. The CPU times (in seconds) are measured by the function proc.time.1

For all experiments, we set δ = 10−12 for convergence of the algorithms, δRe = 1
and k = 1 for the re-starting condition.

1 Times are typically available to 10 msec.
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4.1 Linear models

Consider the following linear model

y = Xβ + e, (10)

where y is an n×1 vector of n observations, X is an n× (p+1) known design matrix,
β is a vector of p+ 1 fixed parameters, and e is an n× 1 random vector of errors with
e j ∼ N (0, σ 2) for j = 1, . . . , n:

y =

⎛
⎜⎜⎜⎝

y1
y2
...

yn

⎞
⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎝

x�1
x�2
...

x�n

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

β0
β1
...

βp

⎞
⎟⎟⎟⎠ , e =

⎛
⎜⎜⎜⎝

e1
e2
...

en

⎞
⎟⎟⎟⎠ .

Thus we have

y ∼ N (Xβ, σ 2In). (11)

The analysis of variance and multiple linear regression belong to this model.
We consider the case that y is missing at random. Then y is partitioned into the

observed part yo and the missing part ym . Then the E-step for the (t + 1)th estimate
of ym is given by

y(t+1)
m = E[ym |β(t)] = Xmβ(t),

and the M-step for finding β(t+1) is given by

β(t+1) =
(

X�X
)−1

Xy(t+1),

where y(t+1) = (yo, y(t+1)
m ).

4.1.1 Two-way analysis of variance

We consider the two-way analysis of variance (two-way ANOVA) with two factors A
and B having levels J and K , respectively. Then the two-way ANOVA model can be
written as

y jk = λ0 + λA
j + λB

k + e jk, (12)

where the terms λA
j and λB

k correspond to main effects of A and B. For the parameters,
we impose the sum-to-zero constraints such that

J∑
j=1

λA
j =

K∑
k=1

λB
k = 0.
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In this numerical experiment, y consists of A and B with J = K = 4 levels and is
generated from the normal distribution N (0, 100). We set the proportion of missing
values of y to 50 %, and then find β = (λ0, {λA

j }1≤ j≤4, {λB
k }1≤k≤4) and σ 2. The

procedure is replicated 1,000 times.
In order to evaluate the effect of the re-starting procedure, we examine the con-

vergence behavior of the EM, ε-accelerated EM and εR-accelerated EM algorithms
measured by log10 ‖β(t)− β(∞)‖2 (or log10 ‖β̇(t)− β(∞)‖2), where β(∞) is the MLE
founded by the algorithm. Figure 1 illustrates the traces of these algorithms till the
convergence of the εR-accelerated EM algorithm attains. The figure shows that the
sequence generated by the εR-accelerated EM algorithm converges after 37 iterations
with δ = 10−12, while the sequence of the ε-accelerated EM algorithm matches four-
digit precision to the MLE. For the experiment, the EM algorithm converges after 217

0 5 10 15 20 25 30 35

−
10

−5
0

The number of iterations

lo
g 1

0(
||β

(t)
−β

(∞
) ||2 )

EM

ε−accelerated EM

εR−accelerated EM

Fig. 1 Convergence behavior of the EM (dotted line), ε-accelerated EM (dashed line) and εR-accelerated
EM (solid line) algorithms till the converge of the εR-accelerated EM algorithm attains

Table 1 Summary statistics of the numbers of iterations and CPU times of the EM, ε-accelerated EM (ε),
εR-accelerated EM (εR) and AEM (CG) algorithms from 1,000 simulated data for the two-way ANOVA

The number of iterations CPU time

EM ε εR CG EM ε εR CG

Min. 35.0 14.0 10.00 7.00 0.1000 0.0400 0.0400 0.0900

1st Qu. 109.0 45.0 29.00 17.00 0.3100 0.1400 0.1300 0.2200

Median 163.5 78.0 41.00 22.00 0.4700 0.2300 0.1600 0.2700

Mean 167.7 72.4 40.38 22.29 0.4814 0.2146 0.1615 0.2726

3rd Qu. 214.2 97.0 51.00 27.00 0.6100 0.2800 0.1900 0.3200

Max. 365.0 119.0 79.00 45.00 1.0300 0.3600 0.2800 0.5600
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iterations and the ε-accelerated EM algorithm does after 86 iterations. We can see that
the re-starting procedure works effectively to reduce the number of iterations.

Table 1 presents the summary statistics of the numbers of iterations and CPU times
of these algorithms. The εR-accelerated EM algorithm requires about a quarter of the
number of iterations and about one third of CPU time of the EM algorithm. The AEM
algorithm greatly reduces the number of iterations but increases CPU time comparing
with the other two acceleration algorithms.

4.1.2 Multiple linear regression

For the explanatory variables that are all continuous, X has the first column (1, . . . , 1)�
corresponding toβ0 and the observed values of explanatory variables as other columns:

X =

⎛
⎜⎜⎜⎝

1 x11 . . . x1p

1 x21 . . . x2p
...

...
. . .

...

1 xn1 . . . xnp

⎞
⎟⎟⎟⎠ .

In this numerical experiment, we generate (y, X) for n = 100 and p = 30 from the
multivariate normal distribution N (0,Σp), where Σp is a p × p covariance matrix
and is randomly chosen using a Wishart random number generator. The procedure is
replicated 1,000 times for every algorithm.

We show the results in Table 2. The ε-accelerated EM algorithm converges about
1.7 times faster than the EM algorithm in both of the number of iterations and CPU
time. The εR-accelerated EM algorithm furthermore speeds up the convergence of
the EM algorithm. The algorithm requires the number of iterations about 3.5 times
smaller and CPU time about 2.8 times shorter than those of the EM algorithm. The
AEM algorithm reduces the number of iterations as well as the εR-accelerated EM
algorithm but not CPU time. The line search algorithm for finding a suitable α for
each iteration may take a longer computation time.

Table 2 Summary statistics of the numbers of iterations and CPU times of the EM, ε-accelerated EM (ε),
εR-accelerated EM (εR) and AEM (CG) algorithms from 1,000 simulated data for the multiple regression
model

The number of iterations CPU time

EM ε εR CG EM ε εR CG

Min. 91.0 58.0 23.00 25.00 0.820 0.530 0.3300 0.5300

1st Qu. 155.8 93.0 43.00 35.00 1.400 0.850 0.5200 0.6900

Median 181.0 108.0 52.00 39.00 1.630 0.980 0.5900 0.7600

Mean 189.9 110.9 53.95 42.84 1.711 1.007 0.6128 0.7775

3rd Qu. 218.0 125.0 63.00 47.00 1.950 1.140 0.7000 0.8400

Max. 432.0 217.0 136.00 140.00 3.850 1.940 1.3400 1.5800
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Fig. 2 Scatter plots of the εR-accelerated EM algorithm by the ε-accelerated EM algorithm for the number
of iterations and CPU time from 1,000 initial values for the multiple regression model

We compare the performance of the εR-accelerated EM algorithm with that of the
ε-accelerated EM algorithm. Figure 2 presents the scatter plots of the εR-accelerated
EM algorithm by the ε-accelerated EM algorithm for the number of iterations and CPU
time. We can see from the figure that the εR-accelerated EM algorithm converges in a
smaller number of iterations than the ε-accelerated EM algorithm and well accelerates
the convergence of {β(t)}t≥0 when the ε-accelerated EM algorithm requires more
iterations and longer CPU time.

4.2 Linear mixed model

The linear mixed model is given by

yi = Xiβ + Zi ui + ei ,

for i = 1, . . . , m, where yi is an ni×1 observed vector, Xi and Zi are known ni× p and
ni×q design matrices corresponding to the p×1 fixed effects vector β to be estimated
and the q × 1 random effects vector ui . We assume that ei and ui are independent of
each other, and ei is distributed N (0, σ 2

0 Ri ) and ui is N (0, D), where Ri is a known
ni × ni matrix and D is an unknown q × q positive definite covariance matrix. We
treat u = (u1, . . . , um) as missing data. The log-likelihood of θ = (β, σ 2

0 , D) given
y = (y1, . . . , ym) is

Lo(θ) = −1

2
n log(2π)− 1

2

m∑
i=1

{
log |Vi | + (yi − Xiβ)�V−1

i (yi − Xiβ)
}

,
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where n = ∑m
i=1 ni and Vi = Zi DZ�i + σ 2

0 Ri . We denote the complete data vector
by w = (w�1 , . . . , w�m)�, where wi = (y�i , u�i )�. The log-likelihood function of θ

for w is

Lc(θ) = −1

2
n log(2π)− 1

2

m∑
i=1

{
log |Σi | + (wi − μi )

�Σ−1
i (wi − μi )

}
,

where

μi =
(

Xiβ

0

)
, Σi =

(
Zi DZ�i + σ 2

0 Ri Zi D
DZ�i D

)
.

At the (t + 1)th iteration, the E-step computes

u(t+1)
i = E[ui |θ(t)] = (Z�i R−1

i Zi + σ
2(t)
0 (D(t))−1)−1Z�i R−1

i (yi − Xiβ
(t))

and

S(t+1)
i = E[ui u�i |θ(t)] = (Z�i R−1

i Zi/σ
2(t)
0 + (D(t))−1)−1 + u(t+1)

i u(t+1)�
i ,

and the M-step updates the estimate of θ by

β(t+1) =
(

m∑
i=1

X�i R−1
i Xi

)−1 m∑
i=1

X�i R−1
i (yi − Zi u

(t+1)
i ),

σ
2(t+1)
0 = 1

n

m∑
i=1

(yi − Xiβ
(t+1) − Zi u

(t+1)
i )�R−1

i (yi − Xiβ
(t+1) − Zi u

(t+1)
i )

+1

n

m∑
i=1

tr
[
Z�i R−1

i Zi (Z�i R−1
i Zi/σ

2(t)
0 + (D(t))−1)−1

]
,

D(t+1) = 1

n

m∑
i=1

S(t+1)
i .

The data shown in Table 3 are the average daily gain of two pigs of each litter
in pounds (Snedecor and Cochran 1967). The experiment was designed so that each
sire (i = 1, . . . , 5) is mated to a random group of dams ( j = 1, 2) and each mating
producing a litter in which two pigs are chosen (k = 1, 2). The gain in weight of those
two pigs is the criterion. The considered model is the linear mixed model with one
random effect

yi j = Xi jβ + Zi j ui j + ei j ,

where yi j is the observed average gain of two pigs by day in pounds produced by the i th
sire and j th dam, β = (β0, β1, . . . , β4)

� is a sire effect, ui j is a random effect associ-
ated with the i th sire and the j th dam and ei j is a random term. We assume that ei j and
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Table 3 Average daily gain of
two pigs of each litter in pounds
(Snedecor and Cochran 1967)

Sire Dam Gain

1 1 2.77

1 1 2.38

1 2 2.58

1 2 2.94

2 1 2.28

2 1 2.22

2 2 3.01

2 2 2.61

3 1 2.36

3 1 2.71

3 2 2.72

3 2 2.74

4 1 2.87

4 1 2.46

4 2 2.31

4 2 2.24

5 1 2.74

5 1 2.56

5 2 2.50

5 2 2.48
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The number of iterations
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ih
oo

d EM

ε−accelerated EM
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Fig. 3 Traces of the log-likelihoods of the EM (dotted line), ε-accelerated EM (dashed line) and
εR-accelerated EM (solid line) algorithms till the converge of the εR-accelerated EM algorithm attains
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Table 4 Summary statistics of the numbers of iterations and CPU times of the EM, ε-accelerated EM (ε)
and εR-accelerated EM (εR) algorithms from 1,000 simulated data for the linear mixed model

The number of iterations CPU time

EM ε εR EM ε εR

Min. 100.0 30.0 7 0.0400 0.0200 0.0100

1st Qu. 159.0 89.0 31 0.0900 0.0500 0.0300

Median 160.0 90.0 32 0.0900 0.0600 0.0300

Mean 159.1 89.7 31 0.0952 0.0552 0.0376

3rd Qu. 160.0 91.0 32 0.1000 0.0600 0.0500

Max. 315.0 245.0 113 0.1800 0.1400 0.1100

ui j are distributed N (0, σ 2
0 I2) and N (0, σ 2

1 ), respectively. Thus the parameters to be

estimated are θ = (β, σ 2
0 , σ 2

1 ). We start with σ
2(0)
0 and σ

2(0)
1 from U (0.001, 1.5)

and with β(0) fixed to the value of mean vector (2.57, 0.098,−0.040, 0.063,

−0.010).
Figure 3 presents the traces of the log-likelihoods of the EM, ε-accelerated EM

and εR-accelerated EM algorithms till the converge of the εR-accelerated EM algo-
rithm attains. The figure indicates that the εR-accelerated EM and ε-accelerated EM
algorithms increase the log-likelihood Lo(θ) much more than the EM algorithm. It
is obvious the faster convergence of these acceleration algorithms over the EM algo-
rithm. Table 4 is the results on 1,000 replications. The εR-accelerated EM algorithm
is about 5 times faster than the EM algorithm and also is about 3 times faster than the
ε-accelerated EM algorithm in the number of iterations. We see that the εR-accelerated
EM algorithm can greatly improve the speed of convergence of the ε-accelerated EM
algorithm.

4.3 Mixture models

Mixture models become increasingly popular due to the modeling flexibility and are
one of the most interesting application areas of the EM algorithm. McLachlan and
Peel (2000) provided a comprehensive book of the theory and applications of mixture
models.

We consider two-component Poisson and normal mixture models. A two-
component mixture model for density of an observation y has the form

f (y|θ) = λ f1(y|θ1)+ (1− λ) f2(y|θ2),

where λ is an unknown mixing proportion (0 < λ < 1), and f1(y|θ1) and f2(y|θ2)

are the component density functions with parameters θ1 and θ2, respectively. The
log-likelihood function of θ = (λ, θ1, θ2) given observations y = (y1, . . . , yn) is
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Lo(θ) =
n∑

i=1

log {λ f1(yi |θ1)+ (1− λ) f2(yi |θ2)} .

In the setting of the EM algorithm, we regard y as incomplete data and introduce latent
variables z = (z1, . . . , zn), where zi = (zi1, zi2) is a binary vector defined as zik = 1
if observation yi arises from the kth component of the mixture model, and zik = 0
otherwise. Then the complete data x are given by x = (y, z)�. The density of x can
be written as

f (x|θ) =
n∏

i=1

∏
k=1,2

{p(zik |λ) fk(yi |θk)}zik ,

where p(zi1 = 1|λ) = λ and p(zi2 = 1|λ) = 1− λ. The log-likelihood function of θ

given x is

Lc(θ) =
n∑

i=1

zi1 log λ f1(yi |θ1)+
n∑

i=1

zi2 log(1− λ) f2(yi |θ2).

Then, the E-step computes the conditional expectations w(yi , θ
′) of zi1 given θ ′ and

yi for i = 1, . . . , n and the M-step finds the MLEs of θ = (λ, θ1, θ2).

4.3.1 Poisson mixture model

We consider a mixture model of two Poisson distributions with θ = (λ, μ1, μ2) given
by

f (y|θ) = λ exp[−μ1]μ
y
1

y! + (1− λ) exp[−μ2]μ
y
2

y! .

The log-likelihood function of θ given observed data y = (y1, . . . , yn) is

Lo(θ) =
n∑

i=1

log

{
λ exp[−μ1]μ

yi
1

yi ! + (1− λ) exp[−μ2]μ
yi
2

yi !

}
. (13)

Let c j be the frequency of Y = yi for j = 0, 1, 2, . . .. Then Eq. (13) can be rewritten
as

Lo(θ) =
∞∑
j=0

c j log

{
λ exp[−μ1]μ

j
1

j ! + (1− λ) exp[−μ2]μ
j
2

j !

}
.

Then the EM estimates for the (t + 1)th iteration are given by

λ(t+1) =
∞∑
j=0

c jw( j, θ(t))

/∞∑
j=0

c j ,

123



M. Kuroda et al.

μ
(t+1)
1 =

∞∑
j=0

jc jw( j, θ(t))

/∞∑
j=0

c jw( j, θ(t)).,

μ
(t+1)
2 =

∞∑
j=0

jc j (1− w( j, θ(t)))

/∞∑
j=0

c j (1− w( j, θ(t))) ,

where

w( j, θ) = λ exp[−μ1]μ j
1/j !

λ exp[−μ1]μ j
1/j ! + (1− λ) exp[−μ2]μ j

2/j !
.

In this numerical experiment, y is generated from the mixture of two Poisson distri-
butions with θ = (λ, μ1, μ2) = (0.4, 3, 5) and is given in Table 5. Then we generate
1,000 initial values of λ from the uniform distribution U (0.05, 0.95), and those of μ1

and μ2 from U (1, 15) under restriction μ
(0)
1 < μ

(0)
2 .

We compare the MLEs θ M L E from the EM and three acceleration algorithms with
the true parameter values θ true = (0.4, 3, 5). The mean values of θ M L E from the
EM algorithms are (0.268, 3.05, 4.78). Each acceleration algorithm can also find the
same values as those from the EM algorithm. The standard errors of θ M L E from each
algorithm are less than 10−4. Thus it can be seen that the MLEs of (μ1, μ2) are closed
to the true values. The values of Lo(θ

M L E ) from the algorithms are−1091.30 and are
larger than Lo(θ

true) = −1092.74 that is the value of the log-likelihood of θ true.
We see from the mean values in Table 6 that the ε-accelerated EM algorithm reduces

1/1.6 of the number of iterations and 1/1.3 of CPU time of the EM algorithm. The
AEM algorithm converges in a substantially smaller number of iterations than those
of the other acceleration algorithms but takes longer CPU time. We note that the εR-
accelerated EM algorithm considerably converges faster than the EM algorithm in
both of the number of iterations and CPU time. As shown in the mean values of the
table, the algorithm requires about 1/10 of the number of iterations and about 1/7 of
CPU time of the EM algorithm. Figure 4 is the scatter plots of the ε-accelerated EM
and εR-accelerated EM algorithms by the EM algorithm for the number of iterations
and CPU time. The figure illustrates that the ε-accelerated EM algorithm increases
linearly with the number of iterations and CPU time as the EM algorithm takes a larger
number of iterations, while there is little variation in those for the εR-accelerated EM
algorithm.

Table 5 Random data generated from the Poisson mixture distribution with parameter (λ, μ1, μ2) =
(0.4, 3, 5)

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

c j 12 40 72 92 87 80 53 29 15 11 6 2 0 1
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Table 6 Summary statistics of the numbers of iterations and CPU times of the EM, ε-accelerated EM (ε),
εR-accelerated EM (εR) and AEM (CG) algorithms from 1,000 simulated data for the Poisson mixture
model

The number of iterations CPU time

EM ε εR CG EM ε εR CG

Min. 1,800 291 63.0 15.00 0.0800 0.0200 0.0100 0.0100

1st Qu. 3,772 2,263 152.0 34.00 0.1900 0.1400 0.0200 0.0800

Median 4,158 2,649 374.0 42.00 0.2200 0.1700 0.0300 0.1100

Mean 3,987 2,479 390.2 44.85 0.2086 0.1606 0.0295 0.1138

3rd Qu. 4,349 2,840 541.0 52.00 0.2300 0.1900 0.0400 0.1400

Max. 4,509 3,000 1174.0 100.00 0.2800 0.2400 0.1000 0.3000

4.3.2 Univariate normal mixture model

Next we consider a mixture model of two univariate normal distributions. Let
φk(y|μk, σ

2
k ) be the kth normal density function with a mean μk and a variance σ 2

k .
The density of an observation y is

f (y|θ) = λφ1(y|μ1, σ
2
1 )+ (1− λ)φ2(y|μ2, σ

2
2 ),

where θ = (λ, μ1, μ2, σ
2
1 , σ 2

2 ). Then the E-step for the (t + 1)th iteration compute
the conditional expectations w(yi , θ) = λφ1(yi |μ1, σ

2
1 )/ f (yi |θ) (i = 1, . . . , n) and

the M-step estimates θ(t+1) by

λ(t+1) =
n∑

i=1

w(yi , θ
(t))

/
n,

μ
(t+1)
1 =

n∑
i=1

w(yi , θ
(t))yi

/
n∑

i=1

w(yi , θ
(t)) ,

μ
(t+1)
2 =

n∑
i=1

(1− w(yi , θ
(t)))yi

/
n∑

i=1

(1− w(yi , θ
(t))) ,

σ
2(t+1)
1 =

n∑
i=1

w(yi , θ
(t))(yi − μ

(t+1)
1 )2

/
n∑

i=1

w(yi , θ
(t)),

σ
2(t+1)
2 =

n∑
i=1

(1− w(yi , θ
(t)))(yi − μ

(t+1)
2 )2

/
n∑

i=1

(1− w(yi , θ
(t))) .

We generate y of size n = 1,000 from the mixture of two univariate normal distribu-
tions with θ = (λ, μ1, μ2, σ

2
1 , σ 2

2 ) = (0.6,−1, 3, 8, 6). In setting 1,000 initial values

of θ , λ(0) is generated from the beta distribution Be(100λ, 100(1− λ)), μ
(0)
k is from

N (μk, 3) and σ
2(0)
k is from U (σ 2

k /2, 2σ 2
k ) for k = 1, 2. We also impose μ

(0)
1 < μ

(0)
2 .
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Table 7 Summary statistics of the numbers of iterations and CPU times of the EM, ε-accelerated EM (ε),
εR-accelerated EM (εR) and AEM (CG) algorithms from 1,000 simulated data for the univariate normal
mixture model

The number of iterations CPU time

EM ε εR CG EM ε εR CG

Min. 336 139 29.0 22.00 0.140 0.060 0.030 0.410

1st Qu. 22,950 5,256 687.8 67.00 9.328 2.230 0.300 1.370

Median 26,910 9,413 770.0 90.00 10.940 3.980 0.340 1.890

Mean 25,950 8,800 833.9 98.05 10.540 3.721 0.368 2.051

3rd Qu. 30,140 12,260 886.2 118.00 12.210 5.170 0.390 2.502

Max. 40,780 21,960 3515.0 331.00 16.550 9.220 1.500 7.070

We obtain from 1,000 simulation runs of the EM and its acceleration algorithms
that the mean values of θ M L E are (0.599,−0.43, 2.59.8.96, 7.27), and the standard
error for the MLE of μ is 0.001 and the errors of other parameters are 0.01. We see that
the MLEs of (λ, μ2) are closed to the true values and, for other parameters, the errors
between the MLEs and the true values are about±1. We obtain Lo(θ

true) = −2599.45
and Lo(θ

M L E ) = −2596.74 for all θ M L E from the algorithms.
Table 7 reports the results of the number of iterations and CPU time. The EM algo-

rithm converges very slowly and takes more than 20000 iterations for convergence.
The number of iterations and CPU time of the ε-accelerated EM algorithm reduces
about one third of those of the EM algorithm. The AEM algorithm takes much fewer
iterations than the ε-accelerated EM and εR-accelerated EM algorithms and its CPU
time is shorter than that of the ε-accelerated EM algorithm. The εR-accelerated EM
algorithm converges 30 times faster than the EM algorithm for both the number of
iterations and CPU time. In terms of the performance of acceleration of the EM algo-
rithm, the εR-accelerated EM algorithm is clearly the best. Figure 5 shows the scatter
plots of the ε-accelerated EM and εR-accelerated EM algorithms by the EM algorithm
for the number of iterations and CPU time. We obtain from the figure the same result
as in the experiment of the Poisson mixture model. They show that the re-starting
procedure can work effectively to reduce the number of iterations and CPU time for
slowly convergent EM sequences.

4.3.3 Bivariate normal mixture model

Finally we consider a mixture model of two bivariate normal distributions. Let
φk(y|μk,Σk) be the kth bivariate normal density function with a mean vector μk

and a covariance matrix Σk . For the two-component mixture model, the density of an
observation y is given by

f (y|θ) = λφ1(y|μ1,Σ1)+ (1− λ)φ2(y|μ2,Σ2),
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Fig. 4 Scatter plots of the ε-accelerated EM (square) and εR-accelerated EM (circle) algorithms by the
EM algorithm for the number of iterations and CPU time from 1,000 initial values for the Poisson mixture
model

where θ = (λ, μ1, μ2,Σ1,Σ2). Then we update the EM estimates for the (t + 1)th
iteration by

λ(t+1) =
n∑

i=1

w(yi , θ
(t))

/
n,

μ
(t+1)
1 =

n∑
i=1

w(yi , θ
(t))yi

/
n∑

i=1

w(yi , θ
(t)) ,

μ
(t+1)
2 =

n∑
i=1

(1− w(yi , θ
(t)))yi

/
n∑

i=1

(1− w(yi , θ
(t))) ,

Σ
(t+1)
1 =

n∑
i=1

w(yi , θ
(t))(yi − μ

(t+1)
1 )(yi − μ

(t+1)
1 )�

/
n∑

i=1

w(yi , θ
(t))

Σ
(t+1)
2 =

n∑
i=1

(1− w(yi , θ
(t)))(yi − μ

(t+1)
2 )(yi − μ

(t+1)
2 )�

/
n∑

i=1

(1− w(yi , θ
(t))) ,

where w(yi , θ) = λφ1(yi |μ1,Σ1)/ f (yi |θ).
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Fig. 5 Scatter plots of the ε-accelerated EM (square) and εR-accelerated EM (circle) algorithms by the
EM algorithm for the number of iterations and CPU time from 1,000 initial values for the univariate normal
mixture model

In this numerical experiment, we generate y of size n = 1,000 from the mixture of
two bivariate normal distributions with

λ = 0.60, μ1 =
(−1
−2

)
, μ2 =

(
3
0

)
,Σ1 =

(
8 2
2 16

)
,Σ2 =

(
6 2
2 12

)
.

In choosing 1,000 initial values of θ , λ(0) is generated from Be(100λ, 100(1−λ)),
μ

(0)
k is from the bivariate normal distribution N2(μk, diag(3)) and Σ

(0)
k is from the

Wishart distribution W2(Σk) for k = 1, 2.
Table 8 shows the mean values of the MLEs from the EM algorithm and their

standard errors. The values from the ε-accelerated and εR-accelerated EM algorithms
are also same in the table. We have the similar results for the errors between the MLEs
and the true values but the larger standard errors in the experiments of the Poisson
and univariate mixture models. The values of Lo(θ

M L E ) from the algorithms are
−5350.29, while Lo(θ

true) = −5352.81.
Table 9 indicates that the EM algorithm requires many iterations and takes long

computation time for each convergence, and thus it is very valuable to accelerate
the convergence of the algorithm. The ε-accelerated EM algorithm takes a half of
the number of iterations and CPU time of the EM algorithm. We see that the εR-
accelerated EM algorithm greatly reduce the number of iterations and CPU time and
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Table 8 The mean values of the MLEs of the EM algorithm from 1,000 simulated data for the bivariate
normal mixture model

λ μ1 μ2

True value 0.60 −1 −2 3 0

MLE 0.547 −0.35 −1.35 1.85 −0.48

(0.005) (0.05) (0.03) (0.05) (0.05)

Σ1 Σ2

True value 8 2 16 6 2 12

MLE 7.65 3.37 16.26 6.77 2.67 13.02

(0.05) (0.05) (0.13) (0.06) (0.07) (0.11)

The values in parenthesis are the standard errors of the MLEs of the EM algorithm

Table 9 Summary statistics of the numbers of iterations and CPU times of the EM, ε-accelerated EM (ε)
and εR-accelerated EM (εR) algorithms from 1,000 simulated data for the bivariate normal mixture model

The number of iterations CPU time

EM ε εR EM ε εR

Min. 31 21 26.0 0.040 0.030 0.040

1st Qu. 5,874 2,185 366.0 9.098 3.365 0.590

Median 7,150 3,478 451.5 11.040 5.320 0.720

Mean 6,552 3,261 534.3 10.120 5.004 0.847

3rd Qu. 8,046 4,351 640.2 12.410 6.660 1.010

Max. 10,400 6,705 2,624.0 15.940 11.000 4.100

Table 10 The total numbers of iterations and total CPU times of the EM, ε-accelerated EM (ε) and εR-
accelerated EM (εR) algorithms from 1,000 simulated data for the bivariate normal mixture model

The number of iterations CPU time

EM ε εR EM ε εR

Total 655,1682 326,0672 534,348 10,119.62 5,004.50 846.50

its speed of convergence is 12 times faster than that of the EM algorithm. The results
illustrate that the εR-accelerated EM algorithm can greatly improve the computational
efficiency of the EM algorithm more than the ε-accelerated EM algorithm.

Table 10 gives the total number of iterations and total CPU time for each algorithm.
The EM algorithm requires 65×105 iterations and its computation time is 2.8 h, while
the εR-accelerated EM only takes 5.3 × 105 iterations and 14 min and reduces 1/12
of those of the EM algorithm. The choice of initial values is of great importance for
finding the highest likelihood in mixture models due to the local convergence of the
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EM algorithm. Several different initial values are employed to ensure that the global
maximum is obtained, see Biernacki et al. (2003) and Karlis and Xekalaki (2003). The
results show the possibility that the εR-accelerated EM algorithm greatly contributes
to shorten the total number of iterations and the CPU time required.

5 Concluding remarks

In this paper, we provided the εR-accelerated EM algorithm for increasing the speed
of convergence of the ε-accelerated EM algorithm by embedding the re-starting pro-
cedure in the ε-acceleration step. The re-starting step is a very simple rule, and more-
over is performed with increasing a little bit of computation time for each iteration.
When the re-starting step finds θ̇ (t−1) satisfying that Lo(M(θ̇ (t−1))) > Lo(θ

(t+1))

and ‖θ̇ (t−1)− θ̇ (t−2)‖2 is smaller than a threshold, we re-start the EM iterations using
M(θ̇ (t−1)). We showed under some conditions that the εR-accelerated EM algorithm
accelerates the convergence of the EM sequence more than the ε-accelerated EM
algorithm.

Numerical experiments demonstrate that the εR-accelerated EM algorithm gener-
ates a faster convergent sequence than the ε-accelerated EM algorithm. We see that
the speed of convergence of the εR-accelerated EM algorithm is much faster than that
of the ε-accelerated EM algorithm when the EM algorithm requires many iterations
for convergence. Then the re-starting procedure can work effectively to reduce greatly
the number of iterations and computation time of the ε-accelerated EM algorithm.
We also compared the performance of the εR-accelerated EM and AEM algorithms.
Although the εR-accelerated EM algorithm requires a larger number of iterations than
the AEM algorithm, its CPU time is much shorter than that of the AEM algorithm.
On the other hand, the AEM algorithm needs to evaluate the gradient of likelihood
and find α using a line search algorithm, while the εR-accelerated EM algorithm does
not. Thus the εR-accelerated EM algorithm has more advantageous than the AEM
algorithm in terms of the computational efficiency.

Mixture models are increasingly interest and popularity with the numerous devel-
opments and the frequent applications, see Lee and Scott (2012), Pynea et al. (2009),
Lee et al. (2011) and Lin (2009). The EM algorithm is largely used for the maxi-
mum likelihood estimation of mixture models but its convergence tends to be slow.
Improvement of convergence of the EM algorithm is an important topic. The results
from the experiments show that the εR-accelerated EM algorithm is useful due to its
fast speed of convergence.
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Appendix 1: The vector ε algorithm

Let θ(t) denote a vector of dimensionality d that converges to a vector θ(∞) as t →∞.
Let the inverse [θ ]−1 of a vector θ be defined by
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[θ ]−1 = θ

‖θ‖2 ,

where ||θ || is the Euclidean norm of θ .
In general, the vector ε algorithm for a sequence {θ(t)}t≥0 starts with

ε(t,−1) = 0, ε(t,0) = θ(t),

and then generates a vector ε(t,k+1) by

ε(t,k+1) = ε(t+1,k−1) +
[
ε(t+1,k) − ε(t,k)

]−1
, k = 0, 1, 2, . . . . (14)

For practical implementation, we apply the vector ε algorithm for k = 1 to accelerate
the convergence of {θ(t)}t≥0. From Eq. (14), we have

ε(t,2) = ε(t+1,0) +
[
ε(t+1,1) − ε(t,1)

]−1
for k = 1,

ε(t,1) = ε(t+1,−1) +
[
ε(t+1,0) − ε(t,0)

]−1 =
[
ε(t+1,0) − ε(t,0)

]−1
for k = 0.

Then the vector ε(t,2) becomes as follows:

ε(t,2) = ε(t+1,0) +
[[

ε(t,0) − ε(t+1,0)
]−1 +

[
ε(t+2,0) − ε(t+1,0)

]−1
]−1

= θ(t+1) +
[[

θ(t) − θ(t+1)
]−1 +

[
θ(t+2) − θ(t+1)

]−1
]−1

.

Appendix 2: Pseudo-code of the εR-accelerated EM algorithm

Initialization
We set the initial value of the EM step θ0, the desired precision δ, the threshold
δRe(> δ) and the size of decrement 10−k and determine the maximum number of
iterations (i trmax).

Iterations
θ1 ← M(θ0)

θ̇old ← θ1
i tr ← 0
repeat

i tr ← i tr + 1
θ2 ← M(θ1)

# The ε-acceleration step

θ̇new ← θ1 +
[
[θ0 − θ1]−1 + [θ2 − θ1]−1

]−1

# The re-starting procedure
if ‖θ̇new − θ̇old‖2 < δRe then
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if ‖θ̇new − θ̇old‖2 < δ or i tr > i trmax then
Termination of iterations

end if
θtmp ← M(θ̇new)

if Lo(θtmp) > Lo(θ2) then
θ2 ← θtmp

θ1 ← θ̇new

δRe ← δRe × 10−k

end if
end if
θ̇old ← θ̇new

θ0 ← θ1
θ1 ← θ2

end repeat

Appendix 3: The AEM algorithm of Jamshidian and Jennrich (1993)

We briefly introduce the AEM algorithm, which applies the generalized conjugate
gradient (CG) algorithm to accelerate the EM algorithm. The idea of the AEM algo-
rithm is that the change in θ ′ after an EM iteration g̃(θ ′) = M(θ ′)− θ ′ can be viewed
approximately as a generalized gradient. Thus the AEM algorithm treats the EM step
as a generalized gradient and uses the generalized CG algorithm as an EM accelerator.
The generalized gradient g̃(θ ′) is given by

g̃(θ ′) = M(θ ′)− θ ′ ≈ − ∂2 Q(θ |θ ′)
∂θ∂θ�

−1
∣∣∣∣∣
θ=θ ′

∂Lo(θ)

∂θ

∣∣∣∣
θ=θ ′

.

In the AEM algorithm, first the EM algorithm runs until the difference between
2Lo(θ

(t)) and 2Lo(θ
(t−1)) falls below one. Then the CG accelerator updates the EM

estimate θ(t) for obtaining θ(t+1):

1. Set t = 0 and d(t) = g̃(θ(t)).
2. Find α(t) to maximize Lo(θ

(t) + αd(t)) using a line search algorithm.
3. Update θ(t+1) = θ(t) + α(t)d(t).
4. Compute

g̃(θ(t+1)) = M(θ(t+1))− θ(t+1),

γ (t) = {g(θ(t+1))− g(θ(t))}�g̃(θ(t+1))

{g(θ(t+1))− g(θ(t))}�d(t)
,

where g(θ) is the gradient of Lo(θ).
5. Update d(t+1) = g̃(θ(t+1))− γ (t)d(t) and then t = t + 1.
6. Repeat Steps 2 to 5 until ||g̃(θ(t))||2 ≤ δ.
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