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Abstract

The EM algorithm of Dempster, Laird and Rubin [1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy.
Statist. Soc. Ser. B 39, 1–22] is a very general and popular iterative computational algorithm that is used to find maximum likelihood
estimates from incomplete data and is widely used to perform statistical analysis with missing data, because of its stability, flexibility
and simplicity. However, a common criticism is that the convergence of the EM algorithm is slow. Various algorithms to accelerate
the convergence of the EM algorithm have been proposed. In this paper, we propose the “�-accelerated EM algorithm” that speeds
up the convergence of the EM sequence via the vector � algorithm of Wynn [1962. Acceleration techniques for iterated vector and
matrix problems. Math. Comp. 16, 301–322]. We also demonstrate its theoretical properties. The �-accelerated EM algorithm has
been successfully extended to the EM algorithm without affecting its stability, flexibility and simplicity. Numerical experiments
illustrate the potential of the �-accelerated EM algorithm.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The EM algorithm of Dempster et al. (1977) is a very general and popular iterative computational algorithm that
is used to find maximum likelihood estimates (MLEs) from incomplete data and is widely used to perform statistical
analysis with missing data, because of its stability, flexibility and simplicity. However, a common criticism is that the
convergence of the EM algorithm is slow, since its speed of convergence is linear. In particular, the convergence of the
EM algorithm is quite slow when the proportion of missing data is high.

In order to speed up the convergence of the EM algorithm, various acceleration algorithms have been proposed.
Louis (1982) suggested the EM algorithm incorporating the multivariate version of Aitken’s acceleration method.
Jamshidian and Jennrich (1993) proposed an acceleration algorithm based on conjugate gradients. Lange (1995) used a
quasi-Newton algorithm to accelerate the EM algorithm. Using the Newton-type accelerators requires the computation
of a matrix inversion at each iteration. Then its computation is likely to become rapidly complicated as the number of
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parameters increases, and numerical instabilities are also expected. Therefore, these accelerations do not have some of
the attractive features of the EM algorithm, such as stability, flexibility and simplicity.

Some extensions of the EM algorithm have been proposed. Meng and Rubin (1993) presented the expectation
conditional maximization (ECM) algorithm that improves the maximization process in the M-step. Liu and Rubin
(1994) suggested the expectation conditional maximization either (ECME) algorithm that is an extension of the ECM
algorithm. McLachlan and Krishnan (1997) provided a comprehensive account of the EM algorithm. Geng et al. (2000)
presented the partial imputation EM algorithm that imputes a part of missing data such that the observed data and
imputed data form a monotone data pattern.

In this paper, we propose the “�-accelerated EM algorithm” that accelerates the convergence of the EM sequence
using the vector � algorithm of Wynn (1961). Section 2 describes the vector � algorithm. In Section 3, we presented
the �-accelerated EM algorithm. Then we give the key results that the sequence generated by the �-accelerated EM
algorithm converges to the stationary point of the EM sequence and, for scalar sequences, it converges faster than the
EM sequence. Section 5 examines the performance and properties of the �-accelerated EM algorithm using numerical
experiments.

2. The vector ε algorithm

The � algorithm of Wynn (1961) is utilized to accelerate the convergence of a slowly convergent scalar sequence.
The algorithm has also been extended to vector sequences by Wynn (1962). It is known that the algorithm is very
effective for linearly converging sequences. In this section, we illustrate the vector � algorithm to obtain the proposed
acceleration method for the EM algorithm.

Let �(t) denote a vector of dimension d that converges to a vector �∗ as t → ∞. Let the inverse [x]−1 of a vector x
be defined by

[x]−1 = x

‖x‖2 , ‖x‖2 = 〈x, x〉

in which 〈x, x〉 is the scalar product of x by itself.

In general, the vector � algorithm for a sequence
{
�(t)

}
t �0

starts with

�(t,−1) = 0, �(t,0) = �(t),

and then generates a vector �(t,k+1) by

�(t,k+1) = �(t,k−1) +
[
�(t+1,k) − �(t,k)

]−1
, k = 0, 1, 2, . . . . (1)

For the case of k + 1 = 2r + 2, we have the iteration form

�(t,2r+2) = �(t+1,2r) +
[[

�(t,2r) − �(t+1,2r)
]−1 +

[
�(t+2,2r) − �(t+1,2r)

]−1 −
[
�(t+2,2r−2) − �(t+1,2r)

]−1
]−1

(2)

from Eq. (1), see Brezinski and Zaglia (1991). For practical implementation, we apply the case of r = 0 to Eq. (2):

�(t,2) = �(t+1,0) +
[[

�(t,0) − �(t+1,0)
]−1 +

[
�(t+2,0) − �(t+1,0)

]−1 −
[
�(t+2,−2) − �(t+1,0)

]−1
]−1

. (3)

Then, from the initial conditions �(t,0) = �(t) and �(t,−2) = ∞ of Brezinski and Zaglia (1991), the iteration (3) becomes
as follows:

�(t,2) = �(t+1) +
[[

�(t) − �(t+1)
]−1 +

[
�(t+2) − �(t+1)

]−1
]−1

, (4)

because
[
�(t+2,−2) − �(t+1,0)

]−1 =
[
∞ − �(t+1,0)

]−1 = 0 from the definition of [x]−1.
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Note that, at each iteration, the vector � algorithm requires only O(d) arithmetic operations while the Newton–Raphson
and quasi-Newton algorithms are achieved at O(d3) and O(d2) and thus the computational cost is likely to become
more expensive as d becomes large.

3. The ε-accelerated EM algorithm

Let y be observed data with a sample space �Y and x be complete data augmented by y with a sample space �X. We
assume that there exists a many-to-one mapping from �X to �Y . Instead of observing x in �X, we observe y = y(x)

in �Y . Let f (x|�) denote the probability density function of x and g(y|�) denote the probability density function of y,
where � is an unknown parameter vector with a parameter space �.

Define the conditional expectation of the log-likelihood function log f (x|�) given y and �′ as

Q
(
�|�′) = E

[
log f (X|�)|y, �′] .

The EM algorithm chooses

�(t) = arg max
�∈�

Q
(
�|�(t−1)

)
,

at each iteration t = 1, 2, . . . .

Given an initial value �(0) ∈ �, the �-accelerated EM algorithm incorporating the �-acceleration process performs
the following steps:

E-step: Calculate

Q
(
�|�(t−1)

)
= E

[
log f (X|�)|y, �(t−1)

]
.

M-step: Choose �(t) such that

Q
(
�(t)|�(t−1)

)
�Q

(
�|�(t−1)

)
,

for all � ∈ �.
�-acceleration: Calculate

�̇
(t−2) = �(t−1) +

[[
�(t−2) − �(t−1)

]−1 +
[
�(t) − �(t−1)

]−1
]−1

from Eq. (4) and check the convergence using∥∥∥�̇
(t−2) − �̇

(t−3)
∥∥∥∞ ��,

where ‖x‖∞ = maxi {|xi |} for a vector x = {xi} and � is a desired accuracy.
Note that the �-accelerated EM algorithm does not improve the E- and M-steps but it accelerates the convergence of

the EM sequence using the �-acceleration process.

4. Convergence of the ε-accelerated EM algorithm

The EM algorithm is a first-order successive substitution method and implicitly defines a map � → M(�) from �
to � such that

�(t+1) = M
(
�(t)

)
.

Suppose that �(t) converges to a stationary point �∗ and that M(�) is differentiable at �∗. Expanding M
(
�(t)

)
in a

Taylor series about �∗, Meng and Rubin (1994) gave the following equation:

�(t+1) − �∗ = J ∗ (
�(t) − �∗) + O

(∥∥∥�(t) − �∗
∥∥∥2

)
, t → ∞, (5)
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where J ∗ is the Jacobian matrix for M(�) evaluated at �∗. For sufficiently large t, the distance between �(t) and �∗
tends to be small, and then Eq. (5) becomes

�(t+1) − �∗ = �
(
�(t) − �∗) + O

(∥∥∥�(t) − �∗
∥∥∥2

)
, t → ∞, (6)

where � is the largest eigenvalue of J ∗ (Schafer, 1997).

For the parameter vector �, the iterative sequence
{
�(t)

}
t �0

is said to converge linearly if

c = lim
t→∞

∥∥∥�(t+1) − �∗
∥∥∥∥∥∥�(t) − �∗

∥∥∥ , (7)

where c is some constant, 0 < c < 1. The EM sequence converges linearly and � corresponds to c.
Now we can show the convergence of the �-acceleration process.

Theorem 1. The sequence
{
�̇
(t)

}
t �0

generated by the �-accelerated EM algorithm converges to the stationary point

�∗ of the EM sequence.

Proof. See Appendix B.

Next we investigate the speed of convergence of the �-accelerated EM algorithm for a scalar sequence
{
�(t)

}
t �0

.

To compare the speed of convergence of the �-accelerated EM algorithm with that of the EM algorithm, we provide
the following notion (Brezinski and Zaglia, 1991).

Definition 2. Let
{
�̂
(t)

}
t �0

be a scalar sequence obtained by applying an extrapolation method to
{
�(t)

}
t �0

. Assume

that limt→∞ �(t) = limt→∞ �̂
(t) = �∗. If

lim
t→∞

∣∣∣�̂(t) − �∗
∣∣∣∣∣∣�(t) − �∗
∣∣∣ = 0,

then we say that the sequence
{
�̂
(t)

}
t �0

converges to �∗ faster than
{
�(t)

}
t �0

or the extrapolation method accelerates

the convergence of
{
�(t)

}
t �0

.

For a scalar sequence
{
�(t)

}
t �0

, Eq. (4) is formulated by

�̇
(t) = �(t+1) +

(
1

�(t) − �(t+1)
+ 1

�(t+2) − �(t+1)

)−1

= �(t+1) +
(
�(t) − �(t+1)

) (
�(t+2) − �(t+1)

)

�(t+2) − 2�(t+1) + �(t)
(8)

and is identical to the Aitken �2 method of Aitken (1926). Traub (1964) proved that the Aitken �2 method accelerates
the convergence of linear convergent sequences in the sense that

lim
t→∞

∣∣∣�̂(t) − �∗
∣∣∣∣∣∣�(t+2) − �∗
∣∣∣ = 0.
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From the fact that the EM sequences converge linearly, we can see that the �-accelerated EM algorithm accelerates the
convergence of the EM sequence.

Brezinski and Zaglia (1991) have completely described the convergence and acceleration properties of the vector �
algorithm, only for special classes of vector sequences. Thus, the mathematical consideration of the �-accelerated EM
algorithm is not trivial.

Louis (1982) gave an acceleration formula that resembles Eq. (4) based on the multivariate version of the Aitken’s
acceleration method as follows:

�̃
(t) = �(t−1) +

(
Id − J (t−1)

)−1 (
�(t) − �(t−1)

)
, (9)

where Id denotes the d × d identity matrix and J (t−1) is the Jacobian matrix for M(�) evaluated at �(t−1). In order to

estimate
(
Id − J (t−1)

)−1
, Louis suggested making use of the equation

(
Id − J (t−1)

)−1 = E
[
I

(
�(t−1)|X

)
|y

]
I
(
�(t−1)|y

)−1
, (10)

where

I
(
�(t−1)|x

)
= �2

�� ��T
log f (x|�)

∣∣∣∣∣
�=�(t−1)

,

I
(
�(t−1)|y

)
= �2

�� ��T
log g(y|�)

∣∣∣∣∣
�=�(t−1)

.

After performing the E- and M-steps, Aitken’s acceleration using Eq. (9) generates �̃
(t)

and then uses it in the next
E- and M-steps. Meilijson (1989) pointed out that Louis’s acceleration method using Eq. (9) is essentially equivalent
to the Newton–Raphson algorithm in the neighborhood of MLEs.

The �-accelerated EM algorithm always uses acceleration (4), which does not depend on statistical models. By
contrast, the Newton-type accelerations for the EM algorithm are needed to derive the acceleration formula for every
statistical model. Thus, the �-accelerated EM algorithm accelerates the convergence without affecting its simplicity and
stability.

5. Numerical experiments

In this section, we provide numerical experiments to investigate how much faster the �-accelerated EM algorithm
converges than the EM algorithm. Note that the speed of convergence of the �-accelerated EM algorithm does not
depend on statistical models but on the EM sequence. To examine the performance of the �-accelerated EM algorithm,
we apply the algorithm to data sets for which the speed of convergence of the EM algorithm is quite slow.

Example 1 (Contingency tables with partially classified observations). Consider a 2 × 2 contingency table with

completely and partially classified observations. Let X and Y be dichotomous variables and � =
{
pij

}
i,j=1,2

be a set of

joint probabilities of X and Y. Denote the cross-classified data of X and Y as nXY = {nXY (i, j)}i,j=1,2, and the partially
classified data of X as nX = {nX(i)}i=1,2 and Y as nY = {nY (j)}j=1,2. Assume that the data sets have a multinomial
distribution with an unknown parameter �.

The data sets are shown in Table 1. For these data patterns, the convergence of the EM algorithm is quite slow,
because its convergence is deeply associated with the proportion of missing data. In Table 2, we summarize the number
of iterations for the EM and �-accelerated EM algorithms for each � = 10−5.10−8 and the data sets (a)–(e), and plot
these results in Fig. 1. Table 3 gives the estimates of � by the EM and �-accelerated EM algorithms.

As shown in Table 2 and Fig. 1, the EM algorithm increases linearly with the number of iterations as the data set
changes from (a) to (e), while there is little variation in the number of iterations for the �-accelerated EM algorithm and
its convergence is significantly faster. For example, for � = 10−6 and the data set (d), the �-accelerated EM algorithm
takes only 41 iterations using 43 EM iterations to obtain the final values, while the EM algorithm takes 476 iterations
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Table 1
Contingency table with completely and partially classified data

nY nX nXY

j = 1 j = 2 i = 1 i = 2 i = 1 i = 2

j = 1 j = 2 j = 1 j = 2

(a) 50 30 300 200 5 4 2 1
(b) 100 60 300 200 5 4 2 1
(c) 250 150 300 200 5 4 2 1
(d) 500 300 300 200 5 4 2 1
(e) 1000 600 300 200 5 4 2 1

Table 2
The number of iterations for each �

� (a) (b) (c) (d) (e)

10−5 EM 123 136 166 192 198
�-accelerated EM 58 40 27 36 59

10−6 EM 253 282 364 476 656
�-accelerated EM 72 48 32 41 68

10−7 EM 383 429 561 761 1114
�-accelerated EM 84 64 79 90 86

10−8 EM 513 575 759 1045 1572
�-accelerated EM 119 136 179 234 313

to achieve the same values. For other data sets, the EM algorithm requires the number of iterations roughly 3–10 times
greater than that of the �-accelerated EM algorithm. Table 3 demonstrates that the estimates by the EM algorithm for
� = 10−5 match only three digits to the MLEs that are the estimates with � = 10−7 and 10−8. Then the �-accelerated
EM algorithm finds estimates that are identical to the MLEs.

Next we investigate the speed of convergence of the �-accelerated EM algorithm. In these numerical experiments,
the (i, j)th component-wise speeds of convergence of the EM and �-accelerated EM algorithms are assessed as

Rij = lim
t→∞ r

(t)

ij = lim
t→∞

∣∣∣p(t)

ij − pMLE
ij

∣∣∣∣∣∣p(t−1)

ij − pMLE
ij

∣∣∣ ,

Ṙij = lim
t→∞ ṙ

(t)

ij = lim
t→∞

∣∣∣ṗ(t)

ij − pMLE
ij

∣∣∣∣∣∣p(t+2)

ij − pMLE
ij

∣∣∣ .

If there exist MLEs of �, �MLE =
{
pMLE

ij

}
i,j=1,2

, and the �-accelerated EM algorithm accelerates the convergence of

the sequence
{
�(t)

}
t �0

, then it holds that Ṙij =0 for all i and j. Fig. 2 shows the traces of
{
r
(t)

ij

}
i,j=1,2

and
{
ṙ
(t)

ij

}
i,j=1,2

of the data sets (a)–(e) for each iteration with � = 10−6, and illustrates that the sequence
{
�̇
(t)

}
t �0

converges to �MLE

faster than
{
�(t)

}
t �0

.
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Fig. 1. Plots of the number of iterations for the EM (dashed line) and �-accelerated EM (solid line) algorithms for each �.

Table 3
Estimates of � =

{
pij

}
i,j=1,2

by the EM and �-accelerated EM algorithms for each �

� = 10−5 � = 10−6 � = 10−7, 10−8

EM �-accelerated EM EM �-accelerated EM EM and �-accelerated EM

(a) p11 0.3463 0.3457 0.3458 0.3458 0.3458
p12 0.2572 0.2577 0.2576 0.2577 0.2577
p21 0.2756 0.2761 0.2761 0.2761 0.2761
p22 0.1210 0.1205 0.1205 0.1204 0.1204

(b) p11 0.3471 0.3464 0.3465 0.3465 0.3465
p12 0.2564 0.2570 0.2569 0.2570 0.2570
p21 0.2763 0.2769 0.2768 0.2769 0.2769
p22 0.1203 0.1197 0.1197 0.1197 0.1197

(c) p11 0.3478 0.3469 0.3470 0.3469 0.3469
p12 0.2557 0.2565 0.2564 0.2565 0.2565
p21 0.2765 0.2774 0.2773 0.2774 0.2774
p22 0.1200 0.1192 0.1193 0.1192 0.1192

(d) p11 0.3483 0.3471 0.3472 0.3471 0.3471
p12 0.2551 0.2563 0.2562 0.2563 0.2564
p21 0.2763 0.2775 0.2774 0.2775 0.2776
p22 0.1202 0.1190 0.1191 0.1190 0.1190

(e) p11 0.3491 0.3472 0.3474 0.3472 0.3472
p12 0.2543 0.2563 0.2561 0.2563 0.2563
p21 0.2757 0.2776 0.2775 0.2776 0.2776
p22 0.1209 0.1189 0.1191 0.1190 0.1189
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Fig. 2. Traces of
{
r
(t)

ij

}
i,j=1,2

and
{
ṙ
(t)

ij

}
i,j=1,2

for � = 10−6 and the data sets (a)–(e).

Example 2 (Incomplete bivariate normal data). Let (X1, X2) be a bivariate normal vector with unknown parameters
� = (

�1, �2
)

and � = (	11, 	22, 	12). The observed data are shown in Table 4, where the observed data from No. 1 to
3 are complete, and the data from No. 4, 5 and No. 6, 7 are incomplete with missing X2 and X1, respectively.

The EM algorithm fills in missing data of the incompletely observed data in the E-step and estimates � and � in the
M-step. For the data set (a) and � = 10−6, after 317 iterations of the EM algorithm, the MLEs of � and � are obtained
as follows:

� = (1.3005, 1.4163), � = (0.2371, 4.9603, −1.0478).

The �-accelerated EM algorithm finds the same values after 172 iterations using 174 EM iterations. Using both algorithms
with the data set (b) and � = 10−6, we obtain the same MLEs of � and �:

� = (78.3977, 2247.1084), � = (70.1051, 79869.7113, 2182.2234).

In this case the �-accelerated EM algorithm takes 133 iterations, while the EM algorithm requires 312 iterations.
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Table 4
Incomplete bivariate normal data

No. X1 X2

(a)
1 1.2 2.3
2 1.7 0.1
3 1.6 −0.7
4 0.2 —
5 1.5 —
6 — −0.2
7 — 1.6

(b)
1 68 2000
2 71 1850
3 72 2100
4 84 —
5 90 —
6 — 2150
7 — 2600

From these numerical experiments, we can also see that the sequence generated by the �-accelerated EM algorithm
converges to the MLEs faster than the EM sequence, as for the results of Example 1.

6. Concluding remarks

In this paper, we proposed the �-accelerated EM algorithm that speeds up the convergence of the EM sequence
incorporating the vector � algorithm. The vector � algorithm in itself is a fairly simple computational procedure and its
computational cost is less expensive than that of Newton-type algorithms. The �-accelerated EM algorithm does not
require computation of the matrix inversion at each iteration and thus is numerically stable. Therefore, the �-accelerated
EM algorithm is an extension algorithm within the framework of the EM algorithm without affecting its simplicity,
stability and flexibility.

Theoretically we showed that the �-accelerated EM algorithm is guaranteed to converge to the stationary point of the
EM sequence and that it speeds up the convergence of the scalar EM sequence. Numerical experiments demonstrate that
the �-accelerated EM algorithm produces a sequence that converges to MLEs much faster than the sequence generated
by the EM algorithm. Hence, the �-accelerated EM algorithm finds sufficiently accurate estimates using a smaller
number of EM iterations.

In the future we intend to evaluate theoretically the speed of convergence of the �-accelerated EM algorithm for
vector cases.
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Appendix A

We here give the following equations used in the proof of Theorem 1.
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Lemma 3. For t → ∞, we have〈
�(t+1) − �∗, �(t) − �∗〉 = {� + o(1)}

∥∥∥�(t) − �∗
∥∥∥2

, (11)

∥∥∥�(t+1) − �∗
∥∥∥2 =

{
�2 + o(1)

} ∥∥∥�(t) − �∗
∥∥∥2

, (12)

∥∥∥�(t+1) − �(t)
∥∥∥2 =

{
(1 − �)2 + o(1)

} ∥∥∥�(t) − �∗
∥∥∥2

. (13)

Proof. We show in turn Eqs. (11)–(13).
Proof of (11): From Eq. (6), we have

〈
�(t+1) − �∗, �(t) − �∗〉 =

〈
�

(
�(t) − �∗) + O

(∥∥∥�(t) − �∗
∥∥∥2

)
, �(t) − �∗

〉

= �
∥∥∥�(t) − �∗

∥∥∥2 +
〈
O

(∥∥∥�(t) − �∗
∥∥∥2

)
, �(t) − �∗

〉
, t → ∞.

By limt→∞ �(t) = �∗, we have

lim
t→∞

〈
O

(∥∥∥�(t) − �∗
∥∥∥2

)
, �(t) − �∗

〉
∥∥∥�(t) − �∗

∥∥∥2 = lim
t→∞

∥∥∥�(t) − �∗
∥∥∥2 〈

O(1), �(t) − �∗〉
∥∥∥�(t) − �∗

∥∥∥2 = lim
t→∞

〈
O(1), �(t) − �∗〉

= 0,

so that〈
O

(∥∥∥�(t) − �∗
∥∥∥2

)
, �(t) − �∗

〉
= o

(∥∥∥�(t) − �∗
∥∥∥2

)
, t → ∞.

Thus, we can obtain〈
�(t+1) − �∗, �(t) − �∗〉 = {� + o(1)}

∥∥∥�(t) − �∗
∥∥∥2

, t → ∞.

Proof of (12): For t → ∞, we have
∥∥∥�(t+1) − �∗

∥∥∥2 =
〈
�(t+1) − �∗, �(t+1) − �∗〉

=
〈
�

(
�(t) − �∗) + O

(∥∥∥�(t) − �∗
∥∥∥2

)
, �

(
�(t) − �∗) + O

(∥∥∥�(t) − �∗
∥∥∥2

)〉

= �2
∥∥∥�(t)−�∗

∥∥∥2+2�

〈
�(t)−�∗, O

(∥∥∥�(t) − �∗
∥∥∥2

)〉
+

〈
O

(∥∥∥�(t)−�∗
∥∥∥2

)
, O

(∥∥∥�(t)−�∗
∥∥∥2

)〉
.

By limt→∞ �(t) = �∗, we have

lim
t→∞

〈
O

(∥∥∥�(t) − �∗
∥∥∥2

)
, O

(∥∥∥�(t) − �∗
∥∥∥2

)〉

= lim
t→∞

∥∥∥�(t) − �∗
∥∥∥4 〈O(1), O(1)〉∥∥∥�(t) − �∗

∥∥∥2 = lim
t→∞

∥∥∥�(t) − �∗
∥∥∥2 〈O(1), O(1)〉

= 0,

and then〈
O

(∥∥∥�(t) − �∗
∥∥∥2

)
, O

(∥∥∥�(t) − �∗
∥∥∥2

)〉
= o

(∥∥∥�(t) − �∗
∥∥∥2

)
, t → ∞.
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Thus, we can obtain

∥∥∥�(t+1) − �∗
∥∥∥2 =

{
�2 + o(1)

} ∥∥∥�(t) − �∗
∥∥∥2

, t → ∞.

Proof of (13): We have

∥∥∥�(t+1) − �(t)
∥∥∥2 =

∥∥∥�(t+1) − �∗
∥∥∥2 +

∥∥∥�(t) − �∗
∥∥∥2 − 2

〈
�(t+1) − �∗, �(t) − �∗〉 .

From Eqs. (11) and (12), we can obtain

∥∥∥�(t+1) − �(t)
∥∥∥2 =

{
(1 − �)2 + o(1)

} ∥∥∥�(t) − �∗
∥∥∥2

, t → ∞. �

Appendix B

Proof of Theorem 1. Set 
(t) =
[
�(t) − �(t+1)

]−1 +
[
�(t+2) − �(t+1)

]−1
. From Eq. (4), we have

�̇
(t) − �(t+1) =

[[
�(t) − �(t+1)

]−1 +
[
�(t+2) − �(t+1)

]−1
]−1

=
[

(t)

]−1
(14)

and thus we obtain〈(
�̇
(t) − �(t+1)

)
, 
(t)

〉
= 1. (15)

Here, we prove that 
(t) diverges to infinity as t tends to infinity. From Eq. (6), we have

�(t+2) − �(t+1) = �
(
�(t+1) − �∗) + O

(∥∥∥�(t+1) − �∗
∥∥∥2

)
−

{
�

(
�(t) − �∗) + O

(∥∥∥�(t) − �∗
∥∥∥2

)}

= �
(
�(t+1) − �(t)

)
+ O

(∥∥∥�(t) − �∗
∥∥∥2

)
, t → ∞. (16)

For t → ∞, we have


(t) = �(t) − �(t+1)

∥∥∥�(t) − �(t+1)
∥∥∥2 + �(t+2) − �(t+1)

∥∥∥�(t+2) − �(t+1)
∥∥∥2

= �(t) − �(t+1)

∥∥∥�(t) − �(t+1)
∥∥∥2 +

�
(
�(t+1) − �(t)

)
+ O

(∥∥∥�(t) − �∗
∥∥∥2

)
∥∥∥�(t+2) − �(t+1)

∥∥∥2

=

⎧⎪⎨
⎪⎩

−1∥∥∥�(t+1) − �(t)
∥∥∥2 + �∥∥∥�(t+2) − �(t+1)

∥∥∥2

⎫⎪⎬
⎪⎭

(
�(t+1) − �(t)

)
+

O

(∥∥∥�(t) − �∗
∥∥∥2

)
∥∥∥�(t+2) − �(t+1)

∥∥∥2 .

From Lemma 3 and Eq. (16), we obtain

∥∥∥�(t+2) − �(t+1)
∥∥∥2 =

〈
�

(
�(t+1) − �(t)

)
+ O

(∥∥∥�(t) − �∗
∥∥∥2

)
, �

(
�(t+1) − �(t)

)
+ O

(∥∥∥�(t) − �∗
∥∥∥2

)〉

= �2
∥∥∥�(t+1) − �(t)

∥∥∥2 + o

(∥∥∥�(t) − �∗
∥∥∥2

)
, t → ∞,
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because limt→∞ �(t) = limt→∞ �(t+1) = �∗. Then, from Eq. (13), we have

−1∥∥∥�(t+1) − �(t)
∥∥∥2 + �∥∥∥�(t+2) − �(t+1)

∥∥∥2 = −1∥∥∥�(t+1) − �(t)
∥∥∥2 + �

�2
∥∥∥�(t+1) − �(t)

∥∥∥2 + o

(∥∥∥�(t) − �∗
∥∥∥2

)

=
�(1 − �)

∥∥∥�(t+1) − �(t)
∥∥∥2 + o

(∥∥∥�(t) − �∗
∥∥∥2

)
∥∥∥�(t+1) − �(t)

∥∥∥2
{
�2

∥∥∥�(t+1) − �(t)
∥∥∥2 + o

(∥∥∥�(t) − �∗
∥∥∥2

)}

= �(1 − �)3 + o(1)

�2(1 − �)2 + o(1)

1∥∥∥�(t+1) − �(t)
∥∥∥2 , t → ∞,

and, from Eqs. (12) and (13), we also have

O

(∥∥∥�(t) − �∗
∥∥∥2

)
∥∥∥�(t+2) − �(t+1)

∥∥∥2 = O(1)

�2(1 − �)2 + o(1)
, t → ∞.

Thus, for t → ∞, we can obtain


(t) = �(1 − �)3 + o(1)

�2(1 − �)2 + o(1)

�(t+1) − �(t)

∥∥∥�(t+1) − �(t)
∥∥∥2 + O(1)

�2(1 − �)2 + o(1)
.

Since limt→∞ �(t) = limt→∞ �(t+1) = �∗, 
(t) diverges to infinity as t → ∞. For any t, Eq. (15) holds, so that

limt→∞
(
�̇
(t) − �(t+1)

)
= 	0, where 	0 is the zero vector.

Next we consider the case that some element of �(t) has converged, that is, �(t)
i − �∗

i = 0 for some i ∈ {1, 2, . . . , d}
and all t that are larger than some constant M. Let 
(t)

i denote the ith element of 
(t). Then, for all t > M + 2, we obtain

�̇
(t)

i − �(t+1)
i = 0 from Eq. (14). Since limt→∞ �(t+1)

i = �∗
i , we have

lim
t→∞

(
�̇
(t)

i − �∗
i

)
= 0.

From Eq. (15), we also have, for any t,〈(
�̇
(t) − �(t+1)

)
, 
(t)

〉
=

∑
j 
=i

(
�̇
(t)

j − �(t+1)
j

)

(t)
j = 1.

Since each 
(t)
j (j 
= i) diverges to infinity as t → ∞, we can obtain

lim
t→∞

(
�̇
(t)

j − �(t+1)
j

)
= lim

t→∞
(
�̇
(t)

j − �∗
j

)
= 0. �
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